首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs—for example, the European New Car Assessment Programme (Euro NCAP)—are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis.

The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB.

Methods: A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car.

The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using “harm”-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated.

Results: It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost.

Conclusions: A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.  相似文献   

2.
OBJECTIVE: The aim of this study was to investigate head injuries, injury risks, and corresponding tolerance levels of children in car-to--child pedestrian collisions. METHODS: An in-depth accident analysis was carried out based on 23 accident cases involving child pedestrians. These cases were collected with detailed information about pedestrians, cars, and road environments. All 23 accidents were reconstructed using the MADYMO program with mathematical models of passenger cars and child pedestrians developed at Chalmers University of Technology. The contact properties of the car models were derived from the European New Car Assessment Program (EuroNCAP) subsystem tests. RESULTS: The accident analysis demonstrated that the head was the most frequently and severely injured body part of child pedestrians. Most accidents occurred at impact speeds lower than 40 km/h and 98% of the child pedestrians were impacted from the lateral direction. The initial postures of children at the moment of impact were identified. Nearly half (47%) of the children were running, which was remarkable compared with the situation of adult pedestrians. From accident reconstructions it was found that head impact conditions and injury severities were dependent on the shape and stiffness of the car front, impact velocity, and stature of the child pedestrian. Head injury criteria and corresponding tolerance levels were analyzed and discussed by correlating the calculated injury parameters with the injury outcomes in the accidents. CONCLUSIONS: Reducing head injuries should be set as a priority in the protection of child pedestrians. HIC is an important injury criterion for predicting the risks of head injuries in child pedestrian accidents. The tolerance level of head injuries can have a considerable variation due to individual differences of the child pedestrians. By setting a suitable speed limit and improving the design of car front, the head injury severities of child pedestrians can be reduced.  相似文献   

3.
Objective: The objective of this study was to compare and evaluate the difference in head kinematics between the TNO and THUMS models in pedestrian accident situations.

Methods: The TNO pedestrian model (version 7.4.2) and the THUMS pedestrian model (version 1.4) were compared in one experiment setup and 14 different accident scenarios where the vehicle velocity, leg posture, pedestrian velocity, and pedestrian's initial orientation were altered. In all simulations, the pedestrian model was impacted by a sedan. The head trajectory, head rotation, and head impact velocity were compared, as was the trend when various different parameters were altered.

Results: The multibody model had a larger head wrap-around distance for all accident scenarios. The maximum differences of the head's center of gravity between the models in the global x-, y-, and z-directions at impact were 13.9, 5.8, and 5.6 cm, respectively. The maximum difference between the models in head rotation around the head's inferior–superior axis at head impact was 36°. The head impact velocity differed up to 2.4 m/s between the models. The 2 models showed similar trends for the head trajectory when the various parameters were altered.

Conclusions: There are differences in kinematics between the THUMS and TNO pedestrian models. However, these model differences are of the same magnitude as those induced by other uncertainties in the accident reconstructions, such as initial leg posture and pedestrian velocity.  相似文献   


4.
Objectives: An airbag system for motorcycle applications was developed and marketed in 2006 followed by many research projects on the system. In the airbag system, the bag should be supported during the kinetic energy–absorbing period of a rider in a collision. The previously developed system employed a configuration in which motorcycle structures support the airbag, such as a gauge unit and/or a steering structure. The supporting structure functions to receive the reaction force to hold the airbag during a crash to properly absorb the rider's kinetic energy. However, the previous system requires a larger area for this reaction structure and is applicable only to the motorcycles that can provide that area. To overcome this limitation, we propose an airbag system employing another concept. In this concept, the airbag does not use its vehicle structures as a reaction structure but uses the structures of an opposing vehicle, such as doors and/or pillars of an opposing vehicle. In this project, we aim to verify the effectiveness of the proposed system when installed in a motorcycle that cannot provide a larger area for the reaction structure.

Methods: In the system with this concept, it is assumed that the occupant protection performance is largely affected depending on impact configurations. Accordingly, full-scale motorcycle-to-car crash tests using 125 cm3 scooter-type models with and without the proposed system were conducted in various impact configurations. The 7 impact configurations specified in ISO 13232 were selected as the test configurations. Injury variables and injury indices of head, neck, chest, and abdomen were evaluated with the motorcyclist dummy.

Results: Injury variables and indices obtained from the crash tests with the airbag were compared to those of the baseline tests. In 2 impact configurations, the airbags were supported by the side structures of the opposing vehicle and performed to reduce the injury variable of head and/or chest compared to that of the baseline test.

Conclusion: Through the crash tests, beneficial protection effects of the airbag system were confirmed in particular impact configurations. No significant risk for the occupant due to the airbag was observed in the conducted crash tests. It was concluded that the proposed airbag system has feasibility to reduce rider injury in a collision of a motorcycle without sufficient reaction structure.  相似文献   

5.
Objectives: The aim of this article is to report on the possible relationships between tramway front-end geometry and pedestrian injury risk over a wide range of possible tramway shapes.

Methods: To study the effect of tramway front-end shape on pedestrian injury metrics, accidents were simulated using a custom parameterized model of tramway front-end and pedestrian models available with the MADYMO multibody solver. The approach was automated, allowing the systematic exploration of tramway shapes in conjunction with 4 pedestrian sizes (e.g., 50th percentile male or M50).

Results: A total of 8,840 simulations were run, showing that the injury risk is more important for the head than for other body regions (thorax and lower extremities). The head of the M50 impacted the windshield of the tramway in most of the configurations. Two antagonist mechanisms affecting impact velocity of the head and corresponding head injury criterion (HIC) values were observed. The first is a trunk rotation resulting from an engagement of the lower body that can contribute to an increase in head velocity in the direction of the tram. The second is the loading of the shoulder, which can accelerate the upper trunk and head away from the windshield, resulting in lower impact velocities. Groups of design were defined based on 2 main parameters (windshield height and offset), some of which seem more beneficial than others for tramway design. The pedestrian size and tramway velocity (30 vs. 20?km/h) also affected the results.

Conclusions: When considering only the front-end shape, the best strategy to limit the risk of head injury due to contact with the stiff windshield seems to be to promote the mechanism involving shoulder loading. Because body regions engaged vary with the pedestrian size, none of the groups of designs performed equally well for all pedestrian sizes. The best compromise is achieved with a combination of a large windscreen offset and a high windscreen. Conversely, particularly unfavorable configurations are observed for low windshield heights, especially with a large offset. Beyond the front-end shape, considering the stiffness of the current windshields and the high injury risks predicted for 30?km/h, the stiffness of the windshield should be considered in the future for further gains in pedestrian safety.  相似文献   

6.
Abstract

Objective: Fatal brain injuries result from physiological changes in brain tissues, subsequent to primary damage caused by head impact. Although efforts have been made in past studies to estimate the probability of brain injury, none of them involved prediction of such physiological changes. The goal of this study was to evaluate the fatality prediction capability of a novel approach that predicts an increase in intracranial pressure (ICP) due to primary head injury to estimate the fatality rate using clinical data that correlate ICP with fatality rate.

Methods: A total of 12 sets of head acceleration time histories were used to represent no, severe, and fatal brain injury. They were obtained from the literature presenting head kinematics data in noninjurious volunteer sled tests or from accident reconstruction for severe and fatal injury cases. These were first applied to a Global Human Body Models Consortium (GHBMC) head–brain model to predict nodal displacement time histories of the brain, which were then fed into FEBio to predict ICP. A Weibull distribution was applied to the data for the relationship between fatality rate and ICP obtained from a clinical paper to estimate fatality rate from ICP (procedure A). Fatality rate was also estimated by applying the temporal and spatial maximum value of maximum principal strain (MPSmax) obtained from the GHBMC simulation to an injury probability function for MPSmax (procedure B). Estimated fatality rates were compared between the 2 procedures.

Results: Both procedures estimated higher average fatality rate for higher injury severity. The average fatality rate for procedure A without ischemia representation and procedure B was 72.4 and 51.0% for the fatal injury group and 8.2 and 21.7% for the severe injury group, respectively, showing that procedure A provides more distinct classification between fatal and nonfatal brain injury. It was also found that representation of ischemia in procedure A provides results sensitive to injury severity and impact conditions, requiring further validation of the initial estimate for the relationship between brain compression and ischemic cell death.

Conclusions: Prediction of the probability of fatality by means of a combination of simulations of the primary brain deformation and subsequent ICP increase was found to be more distinct compared to the prediction of primary injury alone combined with the injury probability function from a past study in the select 12 head impact cases.  相似文献   

7.
Objective: Field data show that side impact car crashes have become responsible for a greater proportion of the fatal crashes compared to frontal crashes, which suggests that the protection gained in frontal impact has not been matched in side impact. One of the reasons is the lack of understanding of the torso injury mechanisms in side impact. In particular, the deformation of the rib cage and how it affects the mechanical loading of the individual ribs have yet to be established. Therefore, the objective of this study was to characterize the ribcage deformation in side impacts by describing the kinematics of the sternum relative to the spine.

Methods: The 3D kinematics of the 1st and of the 5th or 6th thoracic vertebrae and of the sternum were obtained for three Post Mortem Human Subjects (PMHS) impacted laterally by a rigid wall traveling at 15 km/h. The experimental data were processed to express the kinematics of the sternum relative to the spine throughout the impact event. Methods were developed to interpolate the kinematics of the vertebrae for which experimental data were not available.

Results: The kinematics of the sternocostal junction for ribs 1 to 6 as well as the orientation of the sternum were expressed in the vertebra coordinate systems defined for each upper thoracic vertebra (T1 to T6). Corridors were designed for the motion of the sternum relative to each vertebra. In the experiments, the sternum moved upward for all rib levels (1 to 6), and away from the spine with an amplitude that increased with the decreasing rib level (from rib 1 to rib 6). None of the differences observed in the kinematics could be correlated to the occurrence of rib fractures.

Conclusions: This study provides both qualitative and quantitative information for the ribcage skeletal kinematics in side impact. This data set provides the information required to better evaluate computational models of the thorax for side impact simulations. The corridors developed in this study provide new biofidelity targets for the impact response of the ribcage. This study contributes to augmenting the state of knowledge of the human chest deformation in side impact to better characterize the rib fracture mechanisms.  相似文献   

8.
Objective: A cyclist assumes various cyclic postures of the lower extremities while pushing the pedals in a rotary motion while pedaling. In order to protect cyclists in collisions, it is necessary to understand what influence these postures have on the global kinematics and injuries of the cyclist.

Method: Finite element (FE) analyses using models of a cyclist, bicycle, and car were conducted. In the simulations, the Total Human Model of Safety (THUMS) occupant model was employed as a cyclist, and the simulation was set up such that the cyclist was hit from its side by a car. Three representative postures of the lower extremities of the cyclist were examined, and the kinematics and injury risk of the cyclist were compared to those obtained by a pedestrian FE model. The risk of a lower extremity injury was assessed based on the knee shear displacement and the tibia bending moment.

Results: When the knee position of the cyclist was higher than the hood leading edge, the hood leading edge contacted the leg of the cyclist, and the pelvis slid over the hood top and the wrap-around distance (WAD) of the cyclist's head was large. The knee was shear loaded by the hood leading edge, and the anterior cruciate ligament (ACL) ruptured. The tibia bending moment was less than the injury threshold. When the cyclist's knee position was lower than the hood leading edge, the hood leading edge contacted the thigh of the cyclist, and the cyclist rotated with the femur as the pivot point about the hood leading edge. In this case, the head impact location of the cyclist against the car was comparable to that of the pedestrian collision. The knee shear displacement and the tibia bending moment were less than the injury thresholds.

Conclusion: The knee height of the cyclist relative to the hood leading edge affected the global kinematics and the head impact location against the car. The loading mode of the lower extremities was also dependent on the initial positions of the lower extremities relative to the car structures. In the foot up and front posture, the knee was loaded in a lateral shear direction by the hood leading edge and as a result the ACL ruptured. The bicycle frame and the struck-side lower extremity interacted and could influence the loadings on lower extremities.  相似文献   


9.
Objective: This article discusses differences between a side impact procedure described in United Nations/Economic Commission for Europe (UN/ECE) Regulation 129 and scenarios observed in real-world cases.

Methods: Numerical simulations of side impact tests utilizing different boundary conditions are used to compare the severity of the Regulation 129 test and the other tests with different kinematics of child restraint systems (CRSs). In the simulations, the authors use a validated finite element (FE) model of real-world CRSs together with a fully deformable numerical model of the Q3 anthropomorphic test device (ATD) by Humanetics Innovative Solution, Inc.

Results: The comparison of 5 selected cases is based on the head injury criterion (HIC) index. Numerical investigations reveal that the presence of oblique velocity components or the way in which the CRS is mounted to the test bench seat fixture is among the significant factors influencing ATD kinematics. The results of analyses show that the side impact test procedure is very sensitive to these parameters. A side impact setup defined in Regulation 129 may minimize the effects of the impact.

Conclusions: It is demonstrated that an artificial anchorage in the Regulation 129 test does not account for a rotation of the CRS, which should appear in the case of a realistic anchorage. Therefore, the adopted procedure generates the smallest HIC value, which is at the level of the far-side impact scenario where there are no obstacles. It is also shown that the presence of nonlateral acceleration components challenges the quality of a CRS and its headrest much more than a pure lateral setup.  相似文献   


10.
Background: In Thailand, road traffic injuries are the leading cause of death for youth ages 15–19 years, with 80% of the injuries and deaths from motorcycle accidents. Objectives: To determine the prevalence of child and young adolescent motorcyclists in Hat Yai municipality and their risk behaviors. Method: A cross-sectional study was conducted between June 2011 and March 2012 in which 2,471 students, ages 8 to 18 years, were recruited from 9 primary and secondary schools in Hat Yai municipality. The questionnaire included questions on being a motorcycle rider or passenger, risky behaviors, and helmet use while riding. Results: Of the total, 1,573 (63.7%) were riders and 898 (36.3%) were pillion passengers. The majority of the riders younger than 15 years rode their motorcycle mainly only in narrow streets for a short trip. Only 30% of the riders wore a helmet every time they rode a motorcycle. About 10% of the participants riding or a passenger on a motorcycle had consumed alcohol at least once before riding their motorcycle. Multiple logistic regression analysis found that motorcycle injuries were significantly associated with speeds greater than 60 km/h, not wearing a helmet while riding, and alcohol consumption before riding (odds ratios 1.63, 1.59, and 3.09, respectively). Conclusion: Nearly two thirds of young adolescents in Hat Yai municipality were motorcycle riders. These young adolescents were at risk of traffic injuries because more than 50% of them had ridden at high speed or not worn a helmet while riding, and some of them had consumed alcohol before riding.  相似文献   

11.
IntroductionDue to the diversity of pedestrian-to-ground impact (secondary impact) mechanisms, secondary impacts always result in more unpredictable injuries as compared to the vehicle-to-pedestrian collisions (primary impact). The purpose of this study is to investigate the effects of vehicle frontal structure, vehicle impact velocity, and pedestrian size and gait on pedestrian-to-ground impact injury risk.MethodA total of 600 simulations were performed using the MADYMO multi-body system and four different sizes of pedestrians and six types initial gait were considered and impacted by five vehicle types at five impact velocities, respectively. The pedestrian rotation angle ranges (PRARs) (a, b, c, d) were defined to identify and classify the pedestrian rotation angles during the ground impact.ResultsThe PRARs a, b, and c were the ranges primarily observed during the pedestrian landing. The PRAR has a significant influence on pedestrian-to-ground impact injuries. However, there was no correlation between the vehicle velocity and head injury criterion (HIC) caused by the secondary impact. In low velocity collisions (20, 30 km/h), the severity of pedestrian head injury risk caused by the secondary impact was higher than that resulting from the primary impact.ConclusionsThe PRARs defined in this study are highly correlated with the pedestrian-to-ground impact mechanism, and can be used to further analyze the pedestrian secondary impact and to predict the head injury risk.Practical applicationsTo reduce the pedestrian secondary impact injury risk, passive and active safety countermeasures should be considered together to prevent the pedestrian's head-to-ground impacts, particularly in the low-velocity collisions.  相似文献   

12.
Objective: The objective of our study was to determine the prevalence of alcohol and drug intoxication among fatally injured motorcyclists in a wide urban area of Zagreb, Croatia.

Methods: We conducted a single-center observational retrospective study over a 10-year period (2007–2016) in 3 counties covering an area including 1.2 million residents. We reviewed the records on fatally injured motorcyclists, collecting information relating to sex, age, cause of death, time of death in relation to the time of the crash, and the circumstances of the crash (time of day, day of the week, season). Blood alcohol concentration (BAC) and toxicology analysis results were collected and analyzed.

Results: We identified 163 deaths (95.7% males, 4.3% females). Overall, 64.2% of the victims were 20 to 39 years old. The majority (50.9%) of those fatally injured were responsible for causing the traffic crash; the rest were determined not to be responsible or the responsibility could not be determined. The most frequent causes of death were multiple injuries (55.8%) and isolated head trauma (23.3%). The rider’s BAC was above the legal limit for driving (>0.50?g/kg) in 53.8% of cases, with a mean BAC of 1.91?g/kg. There was no difference in riding a motorcycle with a BAC above the legal limit between groups defined as younger (≤39 years of age) and older (≥40 years of age). The number of people with an illegal BAC was significantly higher during weekends than during the work week. The BAC of riders who were responsible for the crash was significantly higher than that of those who were not responsible or whose responsibility could not be determined. Use of illegal drugs or nontherapeutic use of legal drugs was not common and was detected in 10.4% of fatally injured riders.

Conclusions: Alcohol intoxication has a major role in motorcycle crash–related mortality. A significant difference in BAC between fatally injured riders responsible for the accident and those who were not responsible implies that measures directed toward prevention of drinking and driving behavior could lower the number of fatal motorcycle crashes. Weekend measures, especially during spring and summer, could have particularly significant effects.  相似文献   

13.
IntroductionMotorcycles vary in design and performance capability, and motorcyclists may select certain motorcycle types based on driving preferences. Conversely, motorcycle performance capability may influence the likelihood of risky driving behaviors such as speeding. Both mechanisms may affect fatal crash risk when examined by motorcycle type. Although it was not possible to estimate the effect of each mechanism, the current study analyzed fatal crash data for evidence of motorcycle type differences in risky driving behaviors and risk of driver death.MethodsStreet legal motorcycles were classified into 10 types based on design characteristics and then further grouped as cruiser/standard, touring, sport touring, sport/unclad sport, supersport, and all others. For each motorcycle type, driver death rates per 10,000 registered vehicle years and the prevalence of fatal crash characteristics such as speeding were analyzed. Differences among motorcycle types concerning the effect of engine displacement were examined using Poisson regression.ResultsOverall, driver death rates for supersport motorcycles were four times as high as those for cruiser/standard motorcycles. Fatally injured supersport drivers were most likely to have been speeding and most likely to have worn helmets, but least likely to have been impaired by alcohol compared with drivers of other motorcycle types. The patterns in driver factors held after accounting for the effects of age and gender. Increased engine displacement was associated with higher driver death rates for each motorcycle type.ConclusionStrong effects of motorcycle type were observed on driver death rates and on the likelihood of risky driving behaviors such as speeding and alcohol impairment. Although the current study could not completely disentangle the effects of motorcycle type and rider characteristics such as age on driver death rates, the effects of both motorcycle type and rider age on the likelihood of risky driving behaviors were observed among fatally injured motorcycle drivers.Impact on IndustryCertain motorcycle designs, particularly supersport motorcycles, are associated with increases in risky driving behaviors and higher driver death rates. At present, there are no proven countermeasures for this situation. However, existing countermeasures such as helmet laws and automated speed enforcement could have a substantial benefit.  相似文献   

14.
Abstract

Objective: To meet increasing customer demand, many vehicle manufacturers are now offering a panoramic sunroof option in their vehicle lineup. Currently, there is no regulatory or consumer test aimed at assessing the potential for ejection mitigation of roof glazing, which leaves manufacturers to develop internal performance standards to guide designs. The goal of this study was to characterize the variety of occupant-to-roof impacts involving unbelted occupants in rollover crashes to determine the ranges of possible effective masses and impact velocities. This information can be used to define occupant retention requirements and performance criteria for roof glazing in occupant ejection protection.

Methods: This study combined computational (MADYMO and LS-Dyna) simulations of occupant kinematics in rollover crashes with laboratory rollover crash tests using the dynamic rollover test system (DRoTS) and linked them through controlled anthropomorphic test device (ATD)-to-roof (“drop”) impact tests. The DRoTS and the ATD drop tests were performed to explore impact scenarios and estimate dummy-to-roof impact impulses. Next, 13 sets of vehicle kinematics and deformation data were extracted from a combination of vehicle dynamics and finite element model simulations that reconstructed variations of rollover crash cases from the field data. Then occupant kinematics data were extracted from a full-factorial sensitivity study that used MADYMO simulations to investigate how changes in anthropometry and seating position would affect occupant–roof impacts across all 13 cases. Finite element (FE) simulations of ATD and Global Human Body Models Consortium (GHBMC) human body model (HBM) roof impacts were performed to investigate the most severe cases from the MADYMO simulations to generate a distribution of head-to-roof impact energies.

Results: From the multiparameter design of experiment and experimental study, kinematics and energy output were extracted and analyzed. Based on dummy-to-roof impact force and dummy-to-roof impact velocity, the most severe rollover scenarios were identified. In the DRoTS experiments followed by the drop tests, the range of identified impact velocities was between 2 and 5.8 m/s. However, computational simulations of the rollover crashes showed higher impact velocities and similar effective masses. The largest dummy-to-roof impact velocity was 11 m/s.

Conclusions: This study combined computational and experimental analyses to determine a range of possible unbelted occupant-to-roof impact energies. These results can be used to determine design parameters for an impactor for the assessment of the risk of roof glazing ejection for unbelted occupants in rollover crashes.  相似文献   

15.
IntroductionAs a convenient and affordable means of transportation, the e-bike is widely used by different age rider groups and for different travel purposes. The underlying reasons for e-bike riders suffering from severe injury may be different in each case.MethodThis study aims to examine the underlying risk factors of severe injury for different groups of e-bike riders by using a combined method, integration of a classification tree and a logistic regression model. Three-year of e-bike crashes occurring in Hunan province are extracted, and risk factor including rider’s attribute, opponent vehicle and driver’s attribute, improper behaviors of riders and drivers, road, and environment characteristics are considered for this analysis.ResultsE-bike riders are segmented into five groups based on the classification tree analysis, and the group of non-occupational riders aged over 55 in urban regions is associated with the highest likelihood of severe injury among the five groups. The logistics analysis for each group shows that several risk factors such as high-speed roads have commonly significant effects on injury severity for different groups; while major factors only have significant effects for specific groups.Practical applicationBased on model results, policy implications to alleviate the crash injury for different e-bike riders groups are recommended, which mainly include enhanced education and enforcement for e-bike risky behaviors, and traffic engineering to regulate the use of e-bikes on high speed roads.  相似文献   

16.
Objectives: The ability to determine risk management controls for quad bike use is confounded by limitations in crash and injury information. The aim of this article is to identify the injury mechanisms, crash characteristics, and contributing factors in fatal quad bike incidents in Australia by activity (recreation and work).

Methods: An in-depth case series study was undertaken of 106 Australian quad bike fatalities that had occurred between 2000 and 2013. All case material held by Australian coroners was obtained and reviewed.

Results: One hundred and six cases were categorized as occurring during recreation (53) and work (53). Fifty-two of the work cases occurred during farmwork. The mean age for those killed during a work activity was 56 years compared to 27 years for recreational riders. Two children under 16 years died while performing farmwork and 13 children under 16 years during recreational activities. The analyses show a very clear pattern for farmwork-related deaths: quad bike rolls or pitches over (farmworker, 85%; recreational rider, 55%), rider becomes pinned under quad bike (farmworker, 68%; recreational rider, 30%), and death by asphyxia (farmworker, 42%; recreational rider, 11%). In contrast, recreational riders suffered complex impact injuries to the head and chest that occurred when the rider was traveling at speed, lost control, was ejected, and collided with an object in the environment and/or interacted with the moving quad bike.

Conclusions: The analyses support the need to improve safe quad bike operation through consideration of the age of the rider, training, helmet use, reducing the propensity of quad bikes to roll, and improving handling so that loss of control events are reduced and to prevent crushing and pinning by the vehicle during and after a rollover crash.  相似文献   


17.
Abstract

Objective: Analyses of crash data have shown that older, obese, and/or female occupants have a higher risk of injury in frontal crashes compared to the rest of the population. The objective of this study was to use parametric finite element (FE) human models to assess the increased injury risks and identify safety concerns for these vulnerable populations.

Methods: We sampled 100 occupants based on age, sex, stature, and body mass index (BMI) to span a wide range of the U.S. adult population. The target anatomical geometry for each of the 100 models was predicted by the statistical geometry models for the rib cage, pelvis, femur, tibia, and external body surface developed previously. A regional landmark-based mesh morphing method was used to morph the Global Human Body Models Consortium (GHBMC) M50-OS model into the target geometries. The morphed human models were then positioned in a validated generic vehicle driver compartment model using a statistical driving posture model. Frontal crash simulations based on U.S. New Car Assessment Program (U.S. NCAP) were conducted. Body region injury risks were calculated based on the risk curves used in the US NCAP, except that scaling was used for the neck, chest, and knee–thigh–hip injury risk curves based on the sizes of the bony structures in the corresponding body regions. Age effects were also considered for predicting chest injury risk.

Results: The simulations demonstrated that driver stature and body shape affect occupant interactions with the restraints and consequently affect occupant kinematics and injury risks in severe frontal crashes. U-shaped relations between occupant stature/weight and head injury risk were observed. Chest injury risk was strongly affected by age and sex, with older female occupants having the highest risk. A strong correlation was also observed between BMI and knee–thigh–hip injury risk, whereas none of the occupant parameters meaningfully affected neck injury risks.

Conclusions: This study is the first to use a large set of diverse FE human models to investigate the combined effects of age, sex, stature, and BMI on injury risks in frontal crashes. The study demonstrated that parametric human models can effectively predict the injury trends for the population and may now be used to optimize restraint systems for people who are not similar in size and shape to the available anthropomorphic test devices (ATDs). New restraints that adapt to occupant age, sex, stature, and body shape may improve crash safety for all occupants.  相似文献   

18.
Abstract

Objective: The purpose of this study is to investigate the injury patterns of noncatastrophic accidents by individual age groups.

Methods: Data were collected from the Korean In-Depth Accident Study database based on actual accident investigation. The noncatastrophic criteria were classified according to U.S. experts from the Centers for Disease Control and Prevention’s recommendations for field triage guidelines of high-risk automobile crash criteria by vehicle intrusions more than 12 in. on occupant sites (including the roof) and more than 18 in. on any site. The Abbreviated Injury Scale (AIS) was used to determine injury patterns for each body region. Severely injured patients were classified as Maximum Abbreviated Injury Scale (MAIS) 3 or higher.

Results: In this study, the most significant injury regions were the head and neck, extremities, and thorax. In addition, the incidence of severe injury among elderly patients was nearly 1.6 times higher than that of non-elderly patients. According to age group, injured body regions among the elderly were the thorax, head and neck, and extremities, in that order. For the non-elderly groups, these were head and neck, extremities, and thorax. Severe injury rates were slightly different for the elderly group (head and neck, abdomen) and non-elderly group (thorax, head and neck).

Conclusions: In both age groups, the rate of severe injury is proportional to an increase in crush extent zone. Front airbag deployment may have a relatively significant relationship to severe injuries.  相似文献   

19.
Background: Although numerous observational studies have demonstrated a protective effect of motorcycle helmets against head injury, the degree of protection against specific head injury types remains unclear. Experimental biomechanics studies involving cadavers, animals, and computer models have established that head injuries have varying etiologies. This retrospective cross-sectional study compared helmet protection against skull fracture, cerebral contusion, intracranial hemorrhage, and cerebral concussion in a consecutive series of motorcycle operators involved in recent traffic crashes in Kentucky.

Methods: Police collision reports linked to hospital inpatient and emergency department (ED) claims were analyzed for the period 2008 to 2012. Motorcycle operators with known helmet use who were not killed at the crash scene were included in the study. Helmet use was ascertained from the police report. Skull fracture, cerebral contusion, intracranial hemorrhage, and cerebral concussion were identified from International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes on the claims records. The relative risks of each type of head injury for helmeted versus unprotected operators were estimated using generalized estimating equations.

Results: Helmets offer substantial protection against skull fracture (relative risk [RR] = 0.31, 95% confidence interval [CI], 0.23, 0.34), cerebral contusion (RR = 0.29, 95% CI, 0.16, 0.53), and intracranial hemorrhage (RR = 0.47, 95% CI, 0.35, 0.63). The findings pertaining to uncomplicated concussion (RR = 0.80, 95% CI, 0.64, 1.01) were inconclusive. A modest protective effect (20% risk reduction) was suggested by the relative risk estimate, but the 95% confidence interval included the null value.

Conclusions: Motorcycle helmets were associated with a 69% reduction in skull fractures, 71% reduction in cerebral contusion, and 53% reduction in intracranial hemorrhage. This study finds that current motorcycle helmets do not protect equally against all types of head injury. Efforts to improve rotational acceleration management in motorcycle helmets should be considered.  相似文献   


20.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号