首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 4year study surveyed 131 lakes across New York State beginning in 2003 to improve our understanding of mercury and gather information from previously untested waters. Our study focused on largemouth and smallmouth bass, walleye and yellow perch, common piscivorous fish shown to accumulate high mercury concentrations and species important to local fisheries. Fish from Adirondack and Catskill Forest Preserve lakes generally had higher mercury concentrations than those from lakes in other areas of the state. Variability between nearby individual lakes was observed, and could be due to differences in water chemistry, lake productivity or the abundance of wetlands in the watershed. We found the following factors impact mercury bioaccumulation: fish length, lake pH, specific conductivity, chlorophyll a, mercury concentration in the water, presence of an outlet dam and amount of contiguous wetlands.  相似文献   

2.
Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using 203Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway.  相似文献   

3.
This paper reviews the literature to determine if lowered water pH (a) affects metal bioaccumulation in freshwater invertebrates, (b) enhances the toxicity of a given metal, and (c) increases waterborne metal concentrations to levels toxic to invertebrates. The elements considered are mercury, lead, cadmium and aluminum. The available evidence suggests that of these elements only mercury is biomagnified in aquatic foodchains. The bioaccumulation of all these elements is influenced by water pH, but data concerning invertebrates is meagre for mercury and lead. The effect of pH on mercury and lead toxicity to invertebrates is unclear and may be largely species specific. Cadmium toxicity is reduced by lower pH, while aluminum toxicity to invertebrates is markedly higher due to changes in aluminum speciation at low pH.  相似文献   

4.
Average mercury concentrations in largemouth bass from Rogers Quarry in east Tennessee were found to increase steadily following the elimination of selenium-rich discharges of fly ash to the quarry in 1989. From 1990 to 1998, mean mercury concentrations (adjusted to compensate for the covariance between individual fish weight and mercury concentration) in bass rose from 0.02 to 0.61 mg/kg. There was no indication that the rate increase was slowing or that mercury concentrations in fish were approaching a plateau or steady state. Mean selenium concentrations in bass declined from 3 to 1 mg/kg over the first five years of the study, but remained at 1-1.5 mg/kg (about twice typical concentrations in bass from local reference sites) for the last three years of the study. Gross physical abnormalities were common in fish from the site in the first three years after elimination of fly ash discharges but disappeared after two more years. Although it remains possible that other chemical or physical changes related to fly ash disposal in the system were associated with increased mercury bioaccumulation, the most likely explanation is that selenium played a critical role. It appears as though aqueous selenium enrichment was capable of having a profound effect on mercury bioaccumulation in this system but at the cost of causing a high incidence of gross abnormalities in fish. However, it is possible that selenium concentrations between the national ambient water quality criterion for the protection of aquatic life, 5 microg/l, and that now found in Rogers Quarry (<2 microg/l) could reduce mercury bioaccumulation without causing adverse effects on aquatic biota and fish-eating wildlife.  相似文献   

5.
The present study reports on the mercury concentrations of the vestimentiferan worm, Lamellibrachia satsuma, (Annelida: Pogonophora) found near hydrothermal vents at a depth of 80-100 m in the northern parts of Kagoshima Bay. The vestimentiferan worms had total mercury concentrations of 238 ng/g in the anterior muscle of the body and 164 ng/g in the posterior trophosome. Methylmercury constituted only 7.6% of total mercury detected anteriorly and 16.3% posteriorly. The mean total mercury concentration in filtrated ambient seawater of the worm habitat was 1.1 ng/l. The worm should accumulate mercury in seawater by a one-step into the anterior and posterior parts as 2.2 x 10(%) and 1.5 x 10(5) times those of the filtered ambient seawater, respectively. The bioaccumulation factor of mercury by the worms with only their respiration would be actually larger than that by other marine animals through food webs. The high bioaccumulation factor of mercury in the worms suggest the following two possibilities: (i) the biological half-life of organomercury in the worm could be exceptionally long; or (ii) the lifetime of vestimentiferan worms examined in the present study could be extremely long. Various metals in one specimen of the worm were analyzed by using ICP-MS, and then gold as well as silver were detected in the worm. Gold was detected for the first time from marine animals.  相似文献   

6.
Human exposure to mercury (Hg) mainly occurs through consumption of aquatics, especially fish. In aquatic systems, the bioaccumulation of Hg across trophic levels could be altered by invasive species through changing community composition. The present study is aimed at measuring total mercury (T-Hg) and methylmercury (MeHg) concentrations in non-native (redbelly tilapia (Tilapia zillii)) and native (Benni (Mesopotamichthys sharpeyi) and common carp (Cyprinus carpio)) fish species throughout Shadegan International Wetland and comparing health risk of their mercury contents to the local population. The concentrations were measured using a direct mercury analyzer (DMA 80). The average values of T-Hg and MeHg for native fishes were 19.8 and 10.49 μg/kg. These concentrations for the invasive fish were 28 and 14.62 μg/kg respectively. Despite having less length and weight than the native fish species, tilapia showed significantly higher T-Hg content, yet the lowest concentration of MeHg was observed in common carp with larger body length and weight. Concerning mercury health risk to consumers, tilapia demonstrated the highest estimated weekly intake (EWI) and percentages of tolerable weekly intake (%TWI) for both T-Hg and MeHg, while the highest hazard quotient (HQ) values were obtained for tilapia and Benni. Taken together, the mercury concentrations in the two native and non-native fishes were acceptable according to the international safety guidelines although the local people shall be warned for consumption of tilapia. Furthermore, the low calculated value of tissue residue criterion (TRC) for the wetland fishes sounds a warning.  相似文献   

7.
This study used an experimental model of a constructed wetland to evaluate the risk of mercury methylation when the soil is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce copper, mercury, and metal-related toxicity in a wastestream. The sediments of the model were varied during construction to provide a control and two levels of sulfate treatment, thus allowing characterization of sulfate's effect on mercury methylation and bioaccumulation in periphyton and two species of fish--eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta). After one year in the experimental model, mean dry-weight normalized total mercury concentrations in mosquitofish from the non-sulfate treated controls (374+/-77 ng/g) and the reference location (233+/-17 ng/g) were significantly lower than those from the low and high sulfate treatments (520+/-73 and 613+/-80 ng/g, respectively). For lake chubsucker, mean total mercury concentration in fish from the high sulfate treatment (276+/-63 ng/g) was significantly elevated over that observed in the control (109+/-47 ng/g), the low sulfate treatment (122+/-42 ng/g), and the reference population (41+/-2 ng/g). Mercury in periphyton was mostly inorganic as methylmercury ranged from 6.6 ng/g (dry weight) in the control to 9.8 ng/g in the high sulfate treatment, while total mercury concentrations ranged from 1147 ng/g in the control to a high of 1297 ng/g in the low sulfate treatment. Fish methylmercury bioaccumulation factors from sediment ranged from 52 to 390 and from 495 to 3059 for water. These results suggest that sulfate treatments add a factor of risk due to elevated production of methylmercury in sediment and porewater which biomagnified into small fish, and may potentially increase through the food web.  相似文献   

8.
Fish mercury concentrations frequently increase after impoundment of a reservoir. Soil flooding releases organic matter and nutrients, providing food to bacterial communities that methylate inorganic mercury. Methylation and bioaccumulation are the primary pathways for mercury accumulation in fish. We investigated if changes in fish mercury concentrations could be predicted from the change in reservoir size. Data for three fish species, northern pike (Esox lucius), walleye (Stizostedion vitreum), and lake whitefish (Coregonus clupeaformis) from reservoirs in northern Manitoba and northern Quebec were used to evaluate four simple models of change in mercury with change in flooded area. For three additional fish species, all primary carnivores, the preferred model consisted of a single exponential enrichment term. This model successfully predicted two cases not used in model development-one with a large change in area and one with a small change in area. Models with good predictive skill can be developed when the underlying dynamics are known.  相似文献   

9.
Topcuoğlu S 《Chemosphere》2001,44(4):691-695
Macroalgae, isopods and fish species were exposed to 137Cs in brackish and sea water conditions for 18 days to determine radionuclide concentration factors. The concentration factors of 137Cs in brown shrimp and polychaete species were also investigated under brackish water conditions. At equilibrium, the concentration factors in macroalgae, isopod, fish, brown shrimp and polychate samples were found to be 2.5, 33, 2, 16 and 11 at 16 degrees C in brackish water conditions, respectively. The accumulation rate in macroalgae species was influenced by temperatures between 6 degrees C and 16 degrees C. The bioaccumulation of 137Cs in isopods at low salinity regime was increased significantly. At the same time, the bioaccumulation rate in macroalgae species also showed slight increase at low salinity. On the other hand, the bioaccumulation rate of 137Cs in the fish species in sea water was higher than in brackish water.  相似文献   

10.
Carolina bays are freshwater wetlands that serve as important feeding habitats for the endangered wood stork (Mycteria americana). Water levels in these bays fluctuate greatly and tend to be acidic and rich in dissolved organic carbon (DOC), factors that favor mercury (Hg) methylation and bioaccumulation in fish. To assess potential risks to wood storks consuming mercury contaminated fish in bays, we sampled fish from 10 bays on the Savannah River Site (SRS), South Carolina, an area with documented use by wood storks. Whole body mercury concentrations in 258 fishes of three species (Erimyzon sucetta, Acantharchuspomotis and Esox americanus) commonly consumed by wood storks were determined. Risk factors for nestlings and free-ranging adults were calculated using published no and lowest observable adverse effect concentration (NOAEC and LOAEC) values for birds. Fish from higher trophic levels and those from wetlands with relatively shallow maximum depths and fluctuating water levels were more likely to exceed NOAEC and LOAEC values. Calculation of exposure rates of nestling wood storks indicated they are at highest risk during the first 10 days of the nestling period. These calculations suggest that there is potential concern for wood storks foraging in relatively shallow bays with fluctuating water levels, even though there is no obvious local source of mercury to these wetlands.  相似文献   

11.
Liver samples of 22 Dall's porpoises (Phocoenoides dalli) collected off the Sanriku coast of Japan were analyzed for investigation on bioaccumulation of total mercury (SigmaHg), organic mercury (OrgHg), inorganic mercury (InHg) and selenium (Se). In the liver, detoxification of Hg was evident by transformation of OrgHg. Se showed different Hg detoxification patterns in the liver with a threshold range of hepatic SigmaHg concentration of about 20-30 microg/g dry weight. The molar ratios of Se/InHg or Se/SigmaHg were obviously higher than 1 when hepatic SigmaHg levels were less than the range, while both ratios were close to 1 when SigmaHg levels were higher than the threshold, suggesting a mechanism by detoxification of OrgHg into less toxic mercuric selenide (HgSe) forms in the latter.  相似文献   

12.
Mercury concentrations in three flatfish species - flounder (Platichtys flesus), plaice (Pleuronectes platessa), and Baltic turbot (Scophthalmus maximus), netted in the southern Baltic Sea were assessed and compared to concentrations of this metal in sediments, sea water, and flatfish food - bivalve Macoma balthica, isopod Saduria entomon, and sprat (Sprattus sprattus). Collected simultaneously with flatfish in 2009 and 2010. Different concentrations of mercury depending on species, tissue or organ, sex, individual length, kind of food, and region were determined. The muscle tissues of turbot had the highest concentrations of the metal. The bioaccumulation (BF) and biomagnification (BMF) factors has been counted showing that the muscle tissues of turbot have maximum affinity for mercury, and thus best reflected the metal contamination of the Baltic Sea environment. The data suggest that the common Baltic turbot (S. maximus) is an important model species, suitable and cost-effective to biomonitor environmental mercury pollution for ecological research.  相似文献   

13.
Total mercury contents from both abiotic and biological compartments within several estuaries from Argentina have been studied since the 1980s. The assessment of mercury occurrence in surface sediments, suspended particulate matter and crab and fish species from Mar Chiquita coastal lagoon, Bahía Blanca estuary and Samborombón Bay (in La Plata river estuary) are included in the present study. All samples were analyzed through Cold Vapor-Atomic Absorption Spectroscopy, following internationally standardized methods. In all cases analytical quality was checked against international reference materials. During the 1980s, Hg contents in sediments and SPM, as well as in edible fish species from Bahía Blanca estuary were significantly higher (p<0.01) than those of the 1990s and 2000s, and the large industrial nucleus located in the northern margin of this estuary was elsewhere identified as the main source of this metal. A permanent monitoring program carried out in 1986 and that is being implemented up to the present has demonstrated that Hg concentration values have significantly decreased (p<0.01) compared to the values of the 1980s. Both, Mar Chiquita coastal lagoon and Samborombón Bay have intermediate mercury levels in their biological compartments. In both cases, the possible occurrence of remote sources of this metal was considered. Even though, Hg values as determined in sediments and suspended particulate matter from Samborombón Bay were the highest ones for the whole analyzed period. Both mercury bioaccumulation and biomagnification processes were evaluated in the studied estuaries, as well as the potential qualification of estuarine foodstuffs for human consumption.  相似文献   

14.
Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy.  相似文献   

15.
Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule were studied through a mesocosms experiment after a medium-term exposure to the metal.The results revealed that the bivalve presented distinct bioaccumulation kinetics according to the different tissues. While the gills showed a linear accumulation pattern, the digestive gland and the entire organism presented a saturation model, with higher accumulation during the first 7d of exposure and lower during the rest of the time. In addition, the bioaccumulation rate was not proportional to the Hg concentration, since the organisms under lower contamination presented higher bioconcentration factors than the ones under higher contamination. Gills were the tissues with higher mercury accumulation capability.Concerning the decontamination phase, C. edule lost approximately 80% of the mercury after 24 h exposure in clean seawater. Nevertheless, never reached the original condition, showing in the final (20 d detox), Hg levels (>0.5 ppm) higher than those allowed by the legislation regulating human food consumption. This represents a matter of concern for Human health.  相似文献   

16.
The comparative experimental study of inorganic mercury (HgII), methylmercury (MeHg) and cadmium (Cd) bioaccumulation in the Asiatic clam Corbicula fluminea was based on a 14 days' exposure to the water column or sediment compartments, as initial contamination sources. For each contaminant and exposure source, a five-point concentration range was set up in order to quantify the relationships between the contamination pressure and bioaccumulation capacity, at the whole soft body level and in five organs: gills, mantle, visceral mass, kidney and foot. Hg and Cd bioaccumulation at the whole organism level was proportional to the metal concentrations in the water column or sediment. For similar exposure conditions, the average ratios between the metal concentrations in the bivalves - [MeHg]/[HgII] and [MeHg]/[Cd] - were close to 10 and 5 for the sediment source and 8 and 15 for the water column source. Metal distribution in the five organs revealed strong specificities, according to the different contamination modalities studied: kidney and gills were clearly associated with Cd exposure, mantle and foot with MeHg exposure and the visceral mass with inorganic Hg exposure.  相似文献   

17.
A one hectare pond on the headwaters of a mercury-contaminated creek in Oak Ridge, Tennessee acted as a biochemical reactor for the production of methylmercury, increasing waterborne methylmercury concentrations in the stream below the pond discharge. The flow of the creek was diverted around the pond in order to eliminate this input. Waterborne total mercury, methylmercury, and mercury in fish, were monitored in the pond and stream before and after bypass. Waterborne methylmercury concentration in the creek downstream from the pond decreased over 800% following diversion of streamflow around the pond, but mercury in redbreast sunfish in the pond tailwater did not decline similarly. Within the pond, now isolated from fresh waterborne mercury inputs from the stream, methylmercury concentrations in the water column remained similar to levels present before bypass. However, mercury concentrations in sunfish in the pond decreased approximately 75% following bypass, despite the continued presence of highly contaminated sediments (approximately 50 mg Hg/kg dry weight). We concluded that a decrease in the fraction of 'dissolved methylmercury' in the isolated pond relative to pre-bypass conditions explained the decrease in mercury in fish within the pond. That observation also indicates that mercury associated with pond sediments was relatively unavailable for eventual bioaccumulation when compared to 'fresh' mercury contributed by upstream sources. The lack of a post-bypass decrease in mercury concentrations in tailwater fish was also likely to be associated with the particle-associated nature of waterborne methylmercury exported from the pond.  相似文献   

18.
The bioaccumulation of inorganic mercury (HgI) and monomethylmercury (MMHg) by benthic organisms and subsequent trophic transfer couples the benthic and pelagic realms of aquatic systems and provides a mechanism for transfer of sedimentary contaminants to aquatic food chains. Experiments were performed to investigate the bioavailability and bioaccumulation of particle-associated HgI and MMHg by the estuarine amphipod Leptocheirus plumulosus to further understand the controls on bioaccumulation by benthic organisms. HgI and MMHg are particle reactive and have a strong affinity for organic matter, a potential food source for amphipods. Microcosm laboratory experiments were performed to determine the effects of organic matter on Hg bioaccumulation and to determine the major route of Hg uptake (i.e. sediment ingestion, uptake from water/porewater, or uptake from 'food'). Amphipods living in organic-rich sediment spiked with Hg accumulated less Hg than those living in sediments with a lower organic matter content. Feeding had a significant impact on the amount of HgI and MMHg accumulated. Similarly, amphipods living in water with little organic matter accumulated more Hg than those living in water with a greater percentage of organic matter. MMHg was more readily available for uptake than HgI. Experimental results, coupled with results from a bioaccumulation model, suggest that accumulation of HgI and MMHg from sediment cannot be accurately predicted based solely on the total Hg, or even the MMHg, concentration of the sediment, and sediment-based bioaccumulation factors. All routes of exposure need to be considered in determining the accumulation of HgI and MMHg from sediment to benthic invertebrates.  相似文献   

19.
Belden JB  Ownby DR  Lotufo GR  Lydy MJ 《Chemosphere》2005,58(9):1161-1168
The potential of TNT to accumulate in aquatic organisms was assessed by determining bioconcentration factors for TNT and TNT biotransformation products using two benthic invertebrates (Chironomus tentans and Lumbriculus variegatus), and by determining the bioaccumulation factor of TNT and TNT biotransformation products due to TNT exposure via feeding for channel catfish (Ictalurus punctatus). In all three species, TNT was rapidly biotransformed resulting in minimal accumulation. The bioconcentration factors for parent TNT ranged from 3 to 4 ml g(-1) for the invertebrates studied, while the TNT bioaccumulation factor for catfish via oral exposure of food pellets was 2.4x10(-5) g g(-1) based on the concentration of TNT in the food pellet. As indicated by this small bioaccumulation factor, TNT accumulation in channel catfish through trophic transfer would be negligible compared to aqueous exposure (previously reported BCF of 0.79 ml g(-1)). TNT extractable biotransformation products accumulated to a greater degree than parent TNT for all three species. In addition, a large fraction of the radioactivity within all three species resisted solvent extraction. The highest bioconcentration factors occurred in L. variegatus with extractable radioactivity measuring 76 ml g(-1) and total radioactivity measuring 216 ml g(-1). Because the bioaccumulation of TNT is very low compared to the bioaccumulation of its biotransformation products, further research including identifying and determining the relative toxicities of these biotransformation products is necessary to fully evaluate the environmental risk posed by exposure to TNT.  相似文献   

20.
Lakes polluted by pulp mill and urban wastes including chlorobleaching of pulp, semipolluted lakes and reference lakes in nearly natural condition in Central Finland were studied for contents of mercury, methyl mercury and organochlorine compounds in sediment, plankton, roach and pike. Chlorobleaching had caused a 30-fold concentration of Hg in bottom sediment related to that of the purest reference lake. This was not reflected to the mercury levels in fish which were highest at one natural condition (humic) lake and rather high also at semipolluted lake Päijänne. Mercury in fish was shown to be mostly methylated but not completely and its time trends could be estimated. Chloroform showed no but carbon tetrachloride, tetrachloroethylene and chlorinated cymenes significant bioaccumulation in fish. Levels of chlorophenols from bleaching had strongly decreased but pentachlorophenol and 2,3,4,6-tetrachlorphenol levels remained related to earlier results. Using fat basis attenuated the power of estimation of food chain enrichment by a three throphic level model for lipohilic biocides and a strong proof was obtained of the enrichment of hexachlorobenzene. The time trends at Päijänne were decreasing for mercury and DDE but increasing for PCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号