首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
康涅狄格州10a以前开展的氮交易计划使其满足了2014年长岛海峡的氮减排目标.在此过程中节约了州数百万美元,据斯坦福(康涅狄格州)水污染管制局的前执代董事珍妮特布朗说.该机构是参与该计划的79家康涅狄格污水处理厂之一.根据1998年美国环境保护署同意降低从康涅狄格州和纽约州进入长岛海峡流域氮量的58.5%而开展了这一计划.它允许康涅狄格州污水处理厂建立、出售和购买额度,以满足其氮排放量限制.至目前为止,已实施了超过40个脱  相似文献   

2.
农业生态系统中氮的利用效率与氮的管理   总被引:32,自引:0,他引:32  
在生产玉米、水稻和小麦的作物系统中既要满足增长的食物需求又要保护环境质量,面对这样一个全球性的挑战,我们不知会成功还是会失败.要使发达国家大规模的作物系统和发展中国家小规模的作物系统中产量、利润和环境保护这三者之间的关系尽可能优化,关键就是要实现氮的供应与作物需求之间的同步性,既不多也不少.为了迎接挑战而制订的研究议程和有效政策,要求我们定量地理解当前这些系统中氮利用的效率及损失的水平、生物物理法控制这些要素的水平和采用改善后的管理措施所获得的经济回报水平.对于这些问题,尽管在基础生物学、生态学和生物地球化学方面的研究进展能提供一些答案,但我们不应该低估科学研究所遇到的重大挑战,因为在全世界很有限的生产耕地上作物系统必须保持产量增加,而对其中氮的控制日益困难.  相似文献   

3.
欧洲的氮状况   总被引:5,自引:0,他引:5  
欧洲(不包括前苏联)的氮收支表明,欧洲氮循环加速的三个主要驱动力是肥料生产(14MtN/a)、矿物燃料燃烧及其它工业(3.3MtN/a)和各种产品中的氮输入(7.6MtN/a).本文估计了欧洲粮食、能源和工业产品系统中活性氮元素的各种泄漏,评估了它们对人类健康及水陆生态系统的影响.考虑到氮流转中的可能后果,未来欧洲有关封闭氮循环和减少活性氮泄漏的环境政策措施最好集中于三个主要驱动力.在确定氮排放上限和制定氯流控制的综合政策方面,如肥料使用、输入和氮水平,临界负载可能是非常有用的工具.  相似文献   

4.
采用水平潜流人工湿地处理TN质量浓度为20~25 mgL,氮形态分别以NH4+-N,NO3--N和有机氮为主的生活污水,分析了氮形态时人工湿地N去除效果的影响.试验结果显示:相应的TN去除率分别为47.2%,71.6%和33.1%.表明人工湿地主要适用于水的深度处理,实现污水中N的无机化特别是将N转化为NO3--N,可显著提高人工湿地的N去除效果.  相似文献   

5.
地下水三氮污染的现状及主要除氮方法   总被引:3,自引:0,他引:3  
本文综述了三氯污染的产生及地下水污染现状,去除地下含水层中的氮是当今国内外重点研究的现场净化技术之一。针对地下水三氮污染状况,文中主要介绍物理化学法、化学法、生物脱氮法等进行研究治理三氮污染。提出控制三氮污染源的方法,以及优化三氮去除技术研究。  相似文献   

6.
长江流域的氮收支   总被引:18,自引:0,他引:18  
引言 长江和长江口氨收支的研究涉及到河流、海洋、大气和陆地,是全球氮循环的重要研究区域.由于人类活动的影响,河流中氮浓度有了很大增加.欧洲大部分河流中氮浓度增加了2~20倍[1].根据美国1974~1981年期间300多条河流383个测站统计,有116个站NO3-N浓度增加,仅27个站浓度减少[2].  相似文献   

7.
为探索一种脱氮反应器在实际水厂运行中的脱氮效果,在某一工业污水处理厂开展相关试验。探索在工况Ⅰ(投加碳源)、工况Ⅱ(投加碳源和脱氮菌)和工况Ⅲ(投加碳源和经过脱氮反应器处理后的脱氮菌)3种情况下总氮的去除效果,并记录碳源使用量和菌剂使用量。工况Ⅰ、Ⅱ和Ⅲ的总氮去除率分别为74.47%、83.54%和85.57%。结合COD、TN去除率,进水水量和碳源投加量,可计算出工况Ⅰ:177.08 mg/L的COD去除27.13 mg/L的TN;工况Ⅱ:180.5 mg/L的COD去除53.89 mg/L的TN;工况Ⅲ:177.0 mg/L的COD去除55.43 mg/L的TN。在同等COD浓度下,工况Ⅱ、Ⅲ的TN去除率均高于工况Ⅰ。工况Ⅱ的TN去除率略低于工况Ⅲ,但其菌剂用量为工况Ⅲ的10倍。该脱氮反应器在减少脱氮菌剂用量的同时保持高效率的脱氮效果。  相似文献   

8.
对庐山风景区不同海拔高度(263~1 400 m)上31个石生苔藓(Haplocladium microphyllum)氮含量〔w(TN),以干质量计〕和氮同位素值(δ15N)进行了分析. 苔藓w(TN)与海拔高度(Laltitude)的关系〔w(TN)=3.11-7.85×10-4Laltitude〕表明,在庐山风景区,随着海拔高度的升高,苔藓w(TN)呈逐渐下降趋势. 根据前人研究的苔藓w(TN)与大气氮沉降量的定量关系,估算出庐山山顶和山脚的大气氮沉降量分别为24.61和41.72 kg/(hm2·a). 苔藓δ15N在-4‰~-2‰范围出现的频率最高,表明庐山风景区大气氮沉降主要来源于农业或自然土壤中氮的释放.   相似文献   

9.
《环境科学》1990,(6):84-84
卡特加特海是平均水深为23米的浅海,70年代中期首次发现其富营养化,卡特加特海的富营养化主要是氮负荷增加引起的,每年由河流和大气输入的氮达4.7—6.7万吨(0.19—0.27mol N·m~2·yr~(-1))。 对东卡特加特海(瑞典西部)的研究表明,在浅的分层的近岸海域,富营养化是一个自我促进的过程,氮源主要是硝酸盐,硝酸盐对浮游植物的春华作用最大,对秋华也重要,春天的藻华主要由大而  相似文献   

10.
王燕丽  肖化云  肖红伟 《环境科学》2012,33(4):1080-1085
通过对贵阳市法国梧桐叶片为期1 a的监测(2009-03~2010-04),分析其叶片氮含量及氮同位素组成随季节变化的规律,并与同期湿沉降监测结果进行对比,探讨维管束植物叶片响应大气湿沉降氮的可能性.结果表明,法国梧桐叶片N%变化范围为1.48%~5.27%,均值为3.36%,根际土TN%为0.29%,叶片δ15N变化范围为4.48‰~8.39‰,均值为6.38‰.叶片N%与δ15N具有较好的相关性,随时间变化皆呈现春夏较高、秋季降低的趋势,冬季落叶,无监测数据.结合该采样点同期雨水监测数据,发现叶片N%与雨水中DIN浓度(0.57~6.74 mg.L-1)、叶片δ15N与雨水δ15NH4+-N呈现一致的变化规律,表明湿沉降氮是叶片吸收氮的一个重要来源,法国梧桐叶片指示大气N沉降量的变化成为可能.研究还发现法国梧桐叶片δ15N比其吸收氮的2个主要端元(根际土δ15TN:3.19‰±1.04‰,雨水δ15N-NH4+:-19.76‰~-10.41‰)都偏正,表明法国梧桐在吸收氮的过程中存在着较大的同位素分馏.  相似文献   

11.
秸秆覆盖与氮减施对土壤氮分布及地下水氮污染影响   总被引:6,自引:4,他引:2  
为探究不同秸秆覆盖方式与氮减施对土壤氮分布、地下水氮污染及夏玉米产量的影响,于2017~2018年在河套灌区开展田间试验.本试验设置常规施肥为对照(CK处理),以30%氮减施(N1)、20%氮减施(N2)和10%氮减施(N3)为3个减施水平处理,每个减施水平设秸秆表覆(B处理)和秸秆深埋(S处理)这2个处理.结果表明,CK土壤氮随土层加深呈波状分布,总体呈降低趋势;秸秆表覆的氮素在0~20 cm土层表聚,NO3--N和NH4+-N含量较CK平均提高22.2%和42.7%,随土层加深而降低;秸秆深埋的氮素在20~40 cm土层聚集,NO3--N和NH4+-N含量较CK平均提高29.8%和48.1%,随土层加深呈先增后降趋势;不同秸秆覆盖下氮素聚集量随氮减施水平提高而减小.收获后,在>80 cm土层,秸秆表覆的NO3--N和NH4+-N累积量较CK平均降低19.9%~58.2%和31.1%~61.7%,而秸秆深埋平均降低36.7%~70.9%和82.6%~89.2%,效果较秸秆表覆显著(P<0.05);秸秆表覆仅BN3较CK平均增产0.4%,秸秆深埋SN2较CK平均增产9.3%;夏玉米产量与氮减施水平的拟合结果表明,秸秆深埋较秸秆表覆增产效果显著(P<0.05),秸秆深埋与14%~20%氮减施增产效果最优;秸秆覆盖与氮减施可缓解氮素淋溶损失,收获后秸秆深埋显著降低地下水氮污染风险(P<0.05),达到改善灌区农田生态环境和提高夏玉米产量的目的.  相似文献   

12.
选用两种δ15N差异显著的铵态氮和硝态氮,分别设置不同浓度的铵态氮和硝态氮来处理莱茵衣藻和蛋白核小球藻,通过分析微藻的稳定氮同位素组成变化,来研究微藻利用不同浓度、不同形态无机氮过程中的稳定氮同位素分馏特征。结果显示,在未添加无机氮的条件下,微藻利用有机氮时,生长缓慢,稳定氮同位素基本上不存在分馏;在添加低浓度无机氮(≤20 mmol/L)时,微藻的生长和稳定氮同位素分馏都随着无机氮浓度的增加而增加;而添加高浓度无机氮(20 mmol/L)时,微藻的生长趋于稳定,铵态氮条件下的微藻稳定氮同位素分馏继续加大,而硝态氮条件下的微藻稳定氮同位素分馏反而减小,可能与此时微藻硝酸还原酶的活力减小有关。  相似文献   

13.
有效控制氮磷输入是水质持续改善的关键因素.为识别澜沧江水系水体中氮磷浓度、氮污染物来源及其空间分布特征,在澜沧江流域开展了干流和支流水样的采集,分析流域不同区域水体氮磷浓度,并利用氮氧同位素技术结合稳定同位素SIAR模型,解析了水系不同区域氮素来源及其贡献率.结果表明:①澜沧江水系氮浓度偏低,ρ(TN)分布在0.34~4.18 mg·L-1之间,从上游至下游有升高趋势;ρ(TP)分布在0.11~2.34 mg·L-1之间.②澜沧江水系的δ15 N-NO3-δ18 O-NO3-值分别分布在-5‰~5‰和-16‰~16‰之间,主要落在降雨及肥料和土壤氮范围内,主要存在硝化作用.③澜沧江干流中土壤氮和化学肥料的贡献率分别为37.67%~42.41%和34.22%~38.56%,粪便和生活污水占15.01%~20.79%,大气沉降仅占4.49%~7.32%.中游支流和下游支流中土壤氮的贡献明显高于化学肥料,土壤氮的贡献率达53.97%~61.57%,化学肥料占33.37%~38.30%,而大气沉降、粪便和生活污水的贡献率较低.研究分析了澜沧江水系上、中和下游干流和支流的氮素来源,为该区域的水质管理和污染源治理提供了依据.  相似文献   

14.
本文评价了稳定氮同位素(δ15N)用于阐述污水氮对沿海生态系统的影响,重点描述波罗的海希默兰湾个案的情况,该海湾接纳主要以溶解的无机氮(DIN)形式排泄的富含15N的三级处理过的污水.巨藻(Fucus vesiculosus)和表层沉积物的δ15N梯度变化曲线示踪到距排泄口24km污水衍生氮的情况.但是高δ15N值(>7‰)说明污水在10km的范围内影响最大.强化的三级处理前后巨藻δ15N值的比较研究表明,从距排泄口约24km到12km范围内污水氮的空间影响是减弱的,而且对于最近生长的组织中的较高的海洋δ15N值来说也是下降的.沉积物中δ15N的记载表明,在污水氮含量最大的年份里随着沉积物中δ15N的急剧增加污水对该湾有机物的生产已造成重大的影响.当污水氮将明显的同位素特征引入系统时以及当它对有机物质的生产已产生主导影响时,生物群和沉积物中的δ15N值可用来跟踪污水氮在水生生态系统中的时空影响.  相似文献   

15.
对贵阳市区到农村地区4个方向的石生苔藓氮含量和氮同位素组成进行了对比分析.苔藓氮含量变化范围为0.85%~2.97%,并从市区(2.24%±0.32%)往外明显降低(1.27%±0.13%),表明贵阳市区氮沉降最高、往外逐渐降低,但在较远的农村地区(> 25 km)苔藓氮含量出现回升(平均1.33%~1.75%),反映了农村地区大气氮输入有所增加.苔藓氮同位素均为负值(-2.50‰~-1.39‰),并从市区到农村地区明显升高.市区苔藓较负的氮同位素比值(平均-8.87‰~-8.59%o)主要指示了城市排泄物和污水所释放的氨源贡献,而郊区和农村地区苔藓较高的氮同位素信号(平均-3.83‰~-2.48‰)主要反映了农业氨源的影响,苔藓氮含量回升可能与农业活动增强有关.此外,贵阳地区苔藓氮同位素的分布特征与受氧化态氮源控制的地区苔藓氮同位素变化相反,因而,贵阳地区大气氮沉降以铵(NHx)沉降为主,该结论有助于更加准确地认识城市地区大气氮沉降的来源和变化.  相似文献   

16.
研究了SBR在不同pH值条件下处理模拟城市生活污水中的脱氮效果.结果表明,在曝气时间为4 h,沉淀静置时间为4h,进水COD浓度为250~300 mg.L-1,进水NH4+-N浓度30~40 mg.L-1时,R2(pH为8.0±0.2)出水氨氮浓度降到0~1 mg.L-1同时有大量的硝态氮生成,出水中硝态氮(NO3--N+NO2--N)的浓度基本在8~10 mg.L-1之间,TIN(TIN=NH4+-N+NO3--N+NO2--N)的去除率在70%左右.R1(pH为7.0±0.2)出水氨氮浓度降到0~5 mg.L-1,而硝态氮浓度在整个过程中基本保持不变且含量极低(1~2 mg.L-1),污泥中总氮含量较高且4 h好氧阶段呈先下降后上升的趋势,典型周期好氧开始时污泥中总氮含量为214 mg.g-1,好氧1 h时含量为210 mg.g-1,好氧结束时含量为215 mg.g-1,水相中TIN的去除率达到85%以上.说明在本研究特殊的工艺条件下,SBR能实现较高的生物脱氮效果,但氮的去除并不是通过传统的硝化反硝化途径实现,而是通过排除微生物超量吸收的富氮污泥来实现.  相似文献   

17.
废水中氨氮和总氮的相关性分析研究   总被引:1,自引:0,他引:1  
为了解废水中氨氮和总氮之间的关系,通过近三年濮阳市6个点位废水中的氨氮和总氮的监测数据,分析了氨氮和总氮之间的线性相关性,得出两者之间的线性系数.结果表明:废水中氨氮和总氮的相关关系较好,相关系数为0.927 0,秋季废水中氨氮和总氮的相关关系最好,其次是春季和冬季,夏季两者的相关性稍差,不同的废水监测点位,氨氮和总氮之间的线性关系有一定差别.  相似文献   

18.
氮与自然     
在某种程度上,人类对全球氮循环的改变是很重要的,因为增加的氮极大地改变了许多天然生态系统的组成、生产率和其它性质.增加的氮为什么有这么大的影响力?为什么如此多的天然生态系统都处于缺氮状态?减缓氯相对于其它元素的循环过程,和控制生态系统水平的氮输入输出过程,都使氮供应成为生态系统动态的限制因子.我们讨论了可以减慢氮循环的因子:陆地植物和其它有机体之间的化学计量学差异,蛋白质沉淀防御植物的多度,土壤有机质中C-N键状态.对输入来讲,氮固定的能量消耗及其后果,氮以外的养分供应,对固氮者的优先取食,所有这些都能限制生物固氮者的多度和/或活动.这些过程加在一起,推动和维持着许多天然陆地生态系统的氮限制.  相似文献   

19.
从时空角度对岩溶区不同赋存条件水体进行研究,目的为掌握无机三氮变化规律、探究影响其转换的环境条件,为喀斯特山区水资源保护与利用提供理论依据。采用标准方法检测水体氨氮、亚硝酸盐氮、硝酸盐氮、DO、CODcr、TP、TN等相关指标,研究表明:①自然环境越是相对封闭,三种无机氮形态总体年内变幅也越小,其中亚硝酸盐氮表现最为显著。②赋存封闭的地下水体氨氮、亚硝酸盐氮与硝酸盐氮含量依次是未检出、0. 006和1. 469 mg/L,其浓度依次增高的特点与亚热带喀斯特山区地层溶蚀孔隙和漏斗等地貌形态的充分发育和淋溶土对氨氮的吸附作用是密切关联的。对于该水体亚硝酸盐氮,初秋时节出现浓度峰值,与夏季农业施肥与土壤下渗补给存在2~3个月时间滞后有关。③地表半开放水体清荷园氨氮和亚硝酸盐氮也表现为夏季含量低的特点。低温影响到AOB活性则成为亚硝酸盐氮冬季含量低的主导因素。春秋季气温回升(相比冬季)而降水不大(相比夏季),故各出现一个峰值。其硝酸盐氮曲线夏季仍然平稳,表征NOB增殖的瓶颈因素不是温度,而与溶解氧有关。④地表开放水体流仓桥河段夏季氨氮浓度低主要与降水稀释和水生植物对氨氮有最大吸收偏好有关。夏季陡变的自然环境条件(栖息环境突变、碳源不足等)和NOB自身适应环境能力差等因素,都会造成其增殖受限、硝化受阻而亚硝酸盐氮累积现象的发生。表现为亚硝酸盐氮峰值时节基本对应着硝酸盐氮低谷时段。且地表径流如要激发NOB活性,DO和环境温度的阈值分别应在4 mg/L和10℃以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号