首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural energy sources like petrol and diesel are going to be diminished in the coming future which will lead to increase in the prices and demands of fossil fuels. Therefore, it is important to find a sustainable alternate of fossil fuels. Bioethanol is one of the alternatives, which is produced from different feedstocks including sugar-based, starch-based and lignocellulose-based materials through fermentation. Since sugar-based (sugar cane and sugar beet) and starch-based (corn) materials are sources of staple food, therefore, research on lignocellulosic materials for bioethanol production is a subject of recent studies. Ethanol production from lignocellulosic materials involves different steps, such as pretreatment, hydrolysis, followed by fermentation process and finally ethanol purification. In this review, we have summarized the recent progresses in bioethanol production and processing from lignocellulosic materials.  相似文献   

2.
The LCA emissions from four renewable energy routes that convert straw/corn stover into usable energy are examined. The conversion options studied are ethanol by fermentation, syndiesel by oxygen gasification followed by Fischer Tropsch synthesis, and electricity by either direct combustion or biomass integrated gasification and combined cycle (BIGCC). The greenhouse gas (GHG) emissions of these four options are evaluated, drawing on a range of studies, and compared to the conventional technology they would replace in a western North American setting. The net avoided GHG emissions for the four energy conversion processes calculated relative to a “business as usual” case are 830 g CO2e/kWh for direct combustion, 839 g CO2e/kWh for BIGCC, 2,060 g CO2e/L for ethanol production, and 2,440 g CO2e/L for FT synthesis of syndiesel. The largest impact on avoided emissions arises from substitution of biomass for fossil fuel. Relative to this, the impact of emissions from processing of fossil fuel, e.g., refining of oil to produce gasoline or diesel, and processing of biomass to produce electricity or transportation fuels, is minor.  相似文献   

3.
Water Consumption in the Production of Ethanol and Petroleum Gasoline   总被引:1,自引:0,他引:1  
We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10–17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8–6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.  相似文献   

4.
We used Life Cycle Assessment to scenario model the potential reductions in cumulative energy demand (both fossil and renewable) and global warming, acidifying, and ozone-depleting emissions associated with a hypothetical national transition from conventional to organic production of four major field crops [canola (Brassica rapa), corn (Zea mays), soy (Glycine max), and wheat (Triticum aestivum)] in Canada. Models of these systems were constructed using a combination of census data, published values, and the requirements for organic production described in the Canadian National Organic Standards in order to be broadly representative of the similarities and differences that characterize these disparate production technologies. Our results indicate that organic crop production would consume, on average, 39% as much energy and generate 77% of the global warming emissions, 17% of the ozone-depleting emissions, and 96% of the acidifying emissions associated with current national production of these crops. These differences were almost exclusively due to the differences in fertilizers used in conventional and organic farming and were most strongly influenced by the higher cumulative energy demand and emissions associated with producing conventional nitrogen fertilizers compared to the green manure production used for biological nitrogen fixation in organic agriculture. Overall, we estimate that a total transition to organic production of these crops in Canada would reduce national energy consumption by 0.8%, global warming emissions by 0.6%, and acidifying emissions by 1.0% but have a negligible influence on reducing ozone-depleting emissions.  相似文献   

5.
As the second largest corn producer in this world, China has abundant corn straw resources. The study assessed the energy balance and global warming potential of corn straw-based bioethanol production and utilization in China from a life cycle perspective. The results revealed that bioethanol used as gasoline and diesel blend fuel could reduce global warming potential by 10%–97% and 4%–96%, respectively, as compared to gasoline and diesel for transport. The total global warming potential, net global warming potential, net energy, and Net Energy Ratio per MJ ethanol generated from corn straw-based bioethanol system are estimated to be 0.20 kg CO2-eq, 0.012 kg CO2-eq, 0.60 MJ, and 1.87, respectively. By using sensitivity analysis, we found that the collected coefficient and compressing density of straw have a more obvious influence on energy balance; transportation distance has a more obvious influence on global warming potential emission factor. The by-products may be utilized as fertilizer, animal feed, cement replacement, or high-value lignin chemicals, which make a contribution to offsetting 0.28 MJ per MJ ethanol of energy consumption.  相似文献   

6.
Contemporary reports on the energy and environmental benefits of bioethanol have suggested that the cellulosic ethanol is significantly more efficient. To understand the development potential of energy crops in Taiwan, the present study has assessed the resources and cost inputs for the planning, harvesting, transporting, and storing procedures of the first generation energy crops during 2007–2010 with the perspective of LCA. In addition, a field investigation focusing on rice straw, the largest agricultural waste in Taiwan, has been conducted since 2010 to obtain fundamental data.This study further analyzes the first and second-generation feedstocks from the perspective of LCA based on field investigated data. Taiwan has not yet established an ethanol plant; therefore, this study established production data by simulating the production efficiency of an economical scale using parameters obtained through production trials, and proposed an evaluation model for the energy input, GHG, and production costs of bioethanol in Taiwan. The results of this study were cross-compared with foreign literature to explore the development potential of bioethanol in Taiwan. The results indicate that based on the current cellulosic ethanol technology in Taiwan, regarding the energy balance, GHG, and production costs, is less efficient than that of the first generation bioethanol.  相似文献   

7.
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.  相似文献   

8.
Current projections estimating world population growth read in conjunction with corresponding projections of increased world energy consumption, point to electricity as the cleaner fuel of the future, especially because of its high efficiency and low levels of pollution. Due mostly to the fact that the electrical end-use devices are considerably more efficient than those using other forms of energy, most developed countries show decreasing curves of energy intensity as technologies become more sophisticated and shift over to increased reliance on electricity. It is therefore argued in this article that a gradual shift away from fossil fuels to electricity is a promising possibility to bring down global air pollution and emissions of greenhouse gases to acceptable levels. Examples are given of greater efficiency achieved by electrification. Overall gains in energy efficiency from the change over from fossil fuels to electricity, are possible even in situations where the electricity is generated by fossil fuel combustion, despite the loss of primary energy in the conversion process. The article also presents electricity generating projects designed for developing countries and countries with economies in transition. The generation of electricity from the combustion of renewable sources (biomass waste), fossil fuels, and other innovative methods are outlined.  相似文献   

9.
Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space–time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol-supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.  相似文献   

10.
Renewable energy as well as nuclear energy are low carbon power that presents the life cycle emissions of greenhouse gases than fossil fuel energy. However, analyzing the relationship between the consumption of renewable energy, consumption of nuclear energy, CO2 emissions and economic growth is crucial for the economic and energy policy decision; we address this question for developed countries. This paper deals with the relationships between nuclear energy, environmental degradation, real GDP and renewable energy. We apply a panel data model for a global panel consisting of nine developed countries during the period 1990–2013. The group studied consists of Canada, France, Japan, Netherlands, Spain, Sweden, Switzerland, UK and the USA. The empirical findings suggest that: (1) a causal link between emissions and real income, (2) a unidirectional causality running from renewable energy to nuclear energy, (3) a unidirectional causal relationship running from capital to environmental degradation, (4) a unidirectional causal relationship running from income to nuclear energy consumption, since the growth hypothesis is valid, (5) a unidirectional causality running from capital to income, (6) no an outstanding role of renewable energy use in the contribution of CO2 emissions.  相似文献   

11.
Abstract

Biomass energy is the most renewable energy resource in the world. Biomass energy is derived from plant and animal material, such as wood from forests, residues from agricultural and forestry processes, and industrial, human or animal wastes. The production of biofuels such as ethanol and biodiesel has the potential to replace significant quantities of fossil fuels in many transport applications, electricity, generate heat and steam, etc. In this study, Turkish sugar sector and sugar capacity, residue quantitiy and its possibility of utilization is examined.  相似文献   

12.
Burning fossil fuel in the North American continent contributes more to the CO2 global warming problem than in any other continent. The resulting climate changes are expected to alter food production. The overall changes in temperature, moisture, carbon dioxide, insect pests, plant pathogens, and weeds associated with global warming are projected to reduce food production in North America. However, in Africa, the projected slight rise in rainfall is encouraging, especially since Africa already suffers from severe shortages of rainfall. For all regions, a reduction in fossil fuel burning is vital. Adoption of sound ecological resource management, especially soil and water conservation and the prevention of deforestation, is important. Together, these steps will benefit agriculture, the environment, farmers, and society as a whole.  相似文献   

13.
Municipal solid waste (MSW) disposal and management is one of the most significant challenges faced by urban communities around the world. Municipal solid waste management (MSWM) over the years has utilized many sophisticated technologies and smart strategies. Municipalities worldwide have pursued numerous initiatives to reduce the environmental burden of the MSW treatment strategies. One of the most beneficial MSWM strategies is the thermal treatment or energy recovery to obtain cleaner renewable energy from waste. Among many waste-to-energy strategies, refuse-derived fuel (RDF) is a solid recovered fuel that can be used as a substitute for conventional fossil fuel. The scope of this study is to investigate the feasibility of RDF production with MSW generated in Metro Vancouver, for co-processing in two cement kilns in the region. This study investigates environmental impacts and benefits and economic costs and profits of RDF production. In addition, RDF utilization as an alternative fuel in cement kilns has been assessed. Cement manufacturing has been selected as one of the most environmentally challenged industries and as a potential destination for RDF to replace a portion of conventional fossil fuels with less energy-intensive fuel. A comprehensive environmental assessment is conducted using a life cycle assessment (LCA) approach. In addition, cost–benefit analysis (CBA) has been carried out to study the economic factors. This research confirmed that RDF production and use in cement kilns can be environmentally and economically viable solution for Metro Vancouver.  相似文献   

14.
Sudan is an agricultural country with fertile land, plenty of water resources, livestock, forestry resources, and agricultural residues. An overview of the energy situation in Sudan is introduced with reference to the end uses and regional distribution. Energy sources are divided into two main types; conventional energy (biomass, petroleum products, and electricity); and non-conventional energy (solar, wind, hydro-electricity, etc.). Sudan possesses a relatively high abundance of solar radiation, and moderate wind speeds, hydro, and biomass energy resources. The application of the new and renewable sources of energy available in Sudan is now a major issue in future energy strategic planning and for an alternative to fossil conventional energy. Sudan is an important case study in the context of renewable energy. It has a long history of meeting its energy needs through renewables. Sudan's renewables' portfolio is broad and diverse, due in part to the country's wide range of climates and landscapes. Like many of the African leaders in renewable energy utilization, Sudan has a well-defined commitment to continue research, development, and implementation of new technologies. Sustainable low-carbon energy scenarios for the new century emphasize the untapped potential of renewable resources. Rural areas of Sudan can benefit from this transition. The increased availability of reliable and efficient energy services stimulates new development alternatives. It is concluded that renewable, environmentally friendly, energy must be encouraged, promoted, invested, implemented, and demonstrated by full-scale plants, especially for use in the remote rural areas of Sudan.  相似文献   

15.
Renewable fuel production, particularly grain-based ethanol, is expanding rapidly in the USA. Although subsidized grain-based ethanol may provide a competitively priced transportation fuel, concerns exist about potential environmental impacts. This contribution focuses on potential water quality implications of expanded grain-based ethanol production and potential impacts of perennial-grass-based cellulosic ethanol. Expanded grain-based ethanol will increase and intensify corn production. Even with recommended fertilizer and land conservation measures, corn acreage can be a major source of N loss to water (20-40 kg ha(-1) yr(-1)). A greater acreage of corn is estimated to increase N and P loss to water by 37% (117 million kg) and 25% (9 million kg), respectively, and measures to encourage adoption of conservation practices are essential to mitigate water quality impairments. Dried distiller's grains remaining after ethanol production from corn grain are used as animal feed and can increase manure P content and may increase N content. Cellulosic fuel-stocks from perennials such as switchgrass and woody materials have the potential to produce ethanol. Although production, storage, and handling of cellulosic materials and conversion technology are limitations, accelerating development of cellulosic ethanol has the potential to reduce dependence on grain fuel-stocks and provide water quality and other environmental benefits. All alternative fuel production technologies could have environmental impacts. There is a need to understand these impacts to help guide policy and help make programmatic and scientific decisions that avoid or mitigate unintended environmental consequences of biofuel production.  相似文献   

16.
生物质能发展现状及前景分析   总被引:6,自引:0,他引:6  
生物质能源作为惟一可再生、可替代化石能源转化成气态、液态和固态燃料以及其它化工原料或者产品的碳资源,随着化石能源的枯竭和人类对全球性环境问题的关注,其替代化石能源利用的研究和开发,已成为科学研究和社会关注的热点。本文对生物质能的资源分类和利用方式进行了分析和研究,提出了生物质能在中国的发展现状、存在的瓶颈以及前景和方向。  相似文献   

17.
Elcock, Deborah, 2010. Future U.S. Water Consumption: The Role of Energy Production. Journal of the American Water Resources Association (JAWRA) 46(3):447-460. DOI: 10.1111/j.1752-1688.2009.00413.x Abstract: This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.  相似文献   

18.
Global warming is a result of increasing anthropogenic CO2 emissions, and the consequences will be dramatic climate changes if no action is taken. One of the main global challenges in the years to come is therefore to reduce the CO2 emissions.Increasing energy efficiency and a transition to renewable energy as the major energy source can reduce CO2 emissions, but such measures can only lead to significant emission reductions in the long-term. Carbon capture and storage (CCS) is a promising technological option for reducing CO2 emissions on a shorter time scale.A model to calculate the CO2 capture potential has been developed, and it is estimated that 25 billion tonnes CO2 can be captured and stored within the EU by 2050. Globally, 236 billion tonnes CO2 can be captured and stored by 2050. The calculations indicate that wide implementation of CCS can reduce CO2 emissions by 54% in the EU and 33% globally in 2050 compared to emission levels today.Such a reduction in emissions is not sufficient to stabilize the climate. Therefore, the strategy to achieve the necessary CO2 emissions reductions must be a combination of (1) increasing energy efficiency, (2) switching from fossil fuel to renewable energy sources, and (3) wide implementation of CCS.  相似文献   

19.
ABSTRACT

The main challenge of utilizing ethanol in diesel engines in blending mode is the phase separation issue. Therefore, an attempt has been performed to enhance the stability feature of ethanol/Jatropha biodiesel (JME) blends by using n-butanol as co-solvent. The 10% by volume of n-butanol is added to the mixtures of 10% and 20% ethanol and 70% and 80% JME, which is denoted as JME10Bu10E and JME10Bu20E, respectively. The phase stability of the evaluated fuels is examined employing visual approach and Thermogravimetric analysis. These methods confirm that there is no phase separation for more than 2 months under ambient conditions. Then, the combustion and emission features are investigated utilizing a diesel engine run with different loads and constant speed. The findings demonstrate that the pmax. and HRR are increased by adding ethanol. The ignition delay is extended with the addition of ethanol while the combustion period is almost the same. The bsfc is decreased by adding ethanol compared to JME fuel. The CO, UHC, and NOx formations are reduced markedly by 40%, 40%, and 40%, respectively, with adding ethanol. Finally, using n-butanol and JME as co-solvents with ethanol supports the growth of renewable energy in the CI engine.  相似文献   

20.
This study aimed at clarifying the impact of deforestation and afforestation on the quality of life in a village in Sichuan Province, China. We devised a conceptual model of bioresource production and use based on quantified energy flow. The basic structure of the model has three sectors: production, use, and externals. We developed comprehensive methodology to quantify the model. Bioresource use per person in 1997 was 3.7 GJ for food, 10.2 GJ for fodder, 0.2–0.4 GJ for building material, 12.8 GJ for fuel, and 1.8 GJ for fertilizer, totaling 28.6–28.8 GJ.We used four environmental indicators to evaluate bioresource production and use: a biological productivity indicator, a use-efficiency indicator, a supply–demand balance indicator, and a self-sufficiency indicator. Use of these indicators showed that supply-demand balance of fuel was dramatically improved from 30% to 85% by afforestation, but 99% of bioresource use still depends on domestic products. Thus, it is necessary to improve biological productivity and promote the efficient use of bioresources to achieve sustainable living in the area. Massive deforestation in the 1950s caused a direct shortage of building material and fuel wood. The shortage of wood led to a stagnation in the rebuilding of houses, and fuel wood was substituted with crop residues. Because crop residues had been used for fertilizer and fodder, their use as fuel caused a shortage of fertilizer and fodder. This was an indirect impact of deforestation on peoples quality of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号