首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klaassen RH  Nolet BA  Bankert D 《Ecology》2006,87(9):2244-2254
We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (below ground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series of short (<1 m) intra-patch movements alternate with longer inter-patch movements (>1 m). Tuber biomass densities showed a positive spatial auto-correlation at a short distance (<3 m), but not at a larger distance (3-8 m). Based on the spatial pattern of the food distribution (which is assumed to be pre-harvest information for the swan) and the energy costs and benefits for different food densities at various distances, we calculated the optimal length of an inter-patch movement. A swan that moves to the patch with the highest gain rate was predicted to move to the adjacent patch (at 1 m) if the food density in the current patch had been high (>25 g/m2) and to a more distant patch (at 7-8 m) if the food density in the current patch had been low (<25 g/m2). This prediction was tested by measuring the response of swans to manipulated tuber densities. In accordance with our predictions, swans moved a long distance (>3 m) from a low-density patch and a short distance (<3 m) from a high-density patch. The quantitative agreement between prediction and observation was greater for swans feeding in pairs than for solitary swans. The result of this movement strategy is that swans visit high-density patches at a higher frequency than on offer and, consequently, achieve a 38% higher long-term gain rate. Swans also take advantage of spatial variance in food abundance by regulating the time in patches, staying longer and consuming more food from rich than from poor patches. We can conclude that the shape of the foraging path is a reflection of the spatial pattern in the distribution of tuber densities and can be understood from an optimal foraging perspective.  相似文献   

2.
Quantifying dispersal is crucial both for understanding ecological population dynamics, and for gaining insight into factors that affect the genetic structure of populations. The role of dispersal becomes pronounced in highly fragmented landscapes inhabited by spatially structured populations. We consider a landscape consisting of a set of habitat patches surrounded by unsuitable matrix, and model dispersal by assuming that the individuals follow a random walk with parameters that may be specific to the habitat type. We allow for spatial variation in patch quality, and account for edge-mediated behavior, the latter meaning that the individuals bias their movement towards the patches when close to an edge between a patch and the matrix. We employ a diffusion approximation of the random walk model to derive analytical expressions for various characteristics of the dispersal process. For example, we derive formulae for the time that an individual is expected to spend in its current patch i, and for the time that it will spend in the matrix, both conditional on the individual hitting next a given patch j before hitting any of the other patches or dying. The analytical formulae are based on the assumptions that the landscape is infinitely large, that the patches are circularly shaped, and that the patches are small compared to interpatch distances. We evaluate the effect of these assumptions by comparing the analytical results to numerical results in a real patch network that violates all of the three assumptions. We then consider a landscape that fulfills the assumptions, and show that in this case the analytical results are in a very good agreement with the numerical results. The results obtained here allow the construction of computationally efficient dispersal models that can be used as components of metapopulation models.  相似文献   

3.
《Ecological modelling》2005,183(4):411-423
Habitat fragmentation can decrease local population persistence by reducing connectivity, which is a function of dispersal of individuals among habitat fragments. Dispersal is often treated as diffusion in population models, even though for many species it is a result of a series of behavioral decisions. We developed a metapopulation model to explore the potential importance of dispersal behaviors in driving metapopulation dynamics. We incorporated types of behavior that affect dispersal—colonization inhibiting, colonization enhancing, extinction inhibiting, extinction enhancing, rescue enhancing, rescue inhibiting—into Levins’ (1969) metapopulation model and projected occupancy rates for a variety of parameter values. Examples from the literature of behaviors associated with each of these parameters are provided. Our model simplifies into previously published metapopulation models that incorporate only a single behavior, and we present a density-dependent rescue function that leads to multiple non-zero equilibria. We found a variety of behavioral effects on metapopulations. Rescue enhancement fills patches faster than does colonization enhancement or extinction inhibition, and declines in patch occupancy are moderate with extinction enhancement, but colonization inhibition causes metapopulation extinction. We also found that with colonization and extinction inhibitions, equilibrium patch occupancy is inversely related to patch turnover rate. With density-dependent rescue, persistence depends not only on the strength of the strong rescue effect, but also on having a sufficient initial fraction of patches occupied; the stronger the rescue effect, the lower this fraction can be. This study suggests that dispersal behavior can have strong influences on metapopulation dynamics. It confirms the importance of understanding the relationship between landscape structure and dispersal behavior in understanding population persistence.  相似文献   

4.
Habitat fragmentation is expected to impose strong selective pressures on dispersal rates. However, evolutionary responses of dispersal are not self-evident, since various selection pressures act in opposite directions. Here we disentangled the components of dispersal behavior in a metapopulation context using the Virtual Migration model, and we linked their variation to habitat fragmentation in the specialist butterfly Proclossiana eunomia. Our study provided a nearly unique opportunity to study how habitat fragmentation modifies dispersal at the landscape scale, as opposed to microlandscapes or simulation studies. Indeed, we studied the same species in four landscapes with various habitat fragmentation levels, in which large amounts of field data were collected and analyzed using similar methodologies. We showed the existence of quantitative variations in dispersal behavior correlated with increased fragmentation. Dispersal propensity from habitat patches (for a given patch size), and mortality during dispersal (for a given patch connectivity) were lower in more fragmented landscapes. We suggest that these were the consequences of two different evolutionary responses of dispersal behavior at the individual level: (1) when fragmentation increased, the reluctance of individuals to cross habitat patch boundaries also increased; (2) when individuals dispersed, they flew straighter in the matrix, which is the best strategy to improve dispersal success. Such evolutionary responses could generate complex nonlinear patterns of dispersal changes at the metapopulation level according to habitat fragmentation. Due to the small size and increased isolation of habitat patches in fragmented landscapes, overall emigration rate and mortality during dispersal remained high. As a consequence, successful dispersal at the metapopulation scale remained limited. Therefore, to what extent the selection of individuals with a lower dispersal propensity and a higher survival during dispersal is able to limit detrimental effects of habitat fragmentation on dispersal success is unknown, and any conclusion that metapopulations would compensate for them is flawed.  相似文献   

5.
Oro D 《Ecology》2008,89(3):838-846
Merging patterns and processes about the way individuals should be distributed in a habitat is a key issue in the framework of spatial ecology. Here the despotic distribution of individuals in two distinct and neighboring patches within a local population of a long-lived colonial bird, the Yellow-legged Gull (Larus michahellis), was assessed. There was no density dependence for suitable habitat at the study population, but behavioral data suggested that birds from the good patch precluded birds from the bad patch from breeding in their patch. Younger breeders were almost exclusively found in the bad patch, where individuals were probably attracted by conspecific attraction from the good patch. Most breeding parameters were lower in the bad patch, resulting mainly from a higher vulnerability to environmental perturbations and a higher rate of intraspecific nest predation. Attempts at breeding dispersal between the two patches were only observed from the bad to the good patch. Strikingly, adult survival and large-scale dispersal, two life history parameters that are very conservative in long-lived organisms, were also more affected at the bad patch when catastrophic predation occurred. The study was consistent with an ideal despotic distribution at small spatial scale, and suggests that individual behavior can influence local population dynamics.  相似文献   

6.
Low-vagility organisms that specialize on transitory successional habitats may be especially dependent upon habitat connectivity to maintain population viability. We analyzed the theoretical intrinsic connectivity of successional landscapes (i.e., the natural juxtaposition of similar habitats that allows dispersal) as a function of patch geometry coupled with the disperser's habitat specificity. Habitat specialists living in poorly connected landscapes (approximating hexagonal patches) have only a 26.5% chance of colonizing a new site when their resident patch becomes unsuitable. In contrast, generalists living in well connected landscapes can virtually always colonize a new site when needed. We infer from our simulation that for some habitat specialists, such as the rare, endemic Florida scrub lizard (Sceloporus woodi), anthropogenic control of successional dynamics for commercial logging may significantly reduce intrinsic connectivity. Lizard population viability may now depend upon the extrinsic connectivity provided by artificial corridors. However, the use of corridors will not serve as a general solution to the problem of anthropogenically reduced intrinsic connectivity until key logistical design problems have been resolved. Moreover, efforts to enhance intrinsic connectivity by modifying patch geometry may produce undesirable edge effects and conflict with old-growth preservation. Future research should focus on developing spatially explicit corridor models, documenting natural levels of intrinsic connectivity, quantifying anthropogenic disruption of natural connectivity, and describing species-specific mechanisms of inter-patch dispersal.  相似文献   

7.
Displacement characteristics in animals are crucial drivers of successful movement decisions in resources acquisition, migration, and dispersal. As landscape structure is modified by human activity, mobility patterns are likely to evolve in response to habitat fragmentation. In species with complex life cycles that involve obligatory migrations between different habitats, one can predict that movement propensity would be promoted by fragmentation as long as it allows to reaching a habitat patch. Here, we compare the movement characteristics of naive toadlets sampled in populations distributed over a fragmentation gradient to test the hypothesis of a positive correlation between fragmentation and mobility levels. We studied toadlet movement in experimental arenas providing small patches of suitable conditions. We recorded the use of these patches (patch behavior) or the absence of their use (overtaking behavior). The more fragmented the original landscape, the more prone the toadlets were to combine these two behaviors, thus showing a higher motivation to explore. Moreover, the more fragmented the original landscape, the less the toadlets exhibited patch behavior. As the toadlets were reared in a common environment, the behavioral differences detected, relating to the level of fragmentation, resulted from inheritance. Our results thus illustrate that fragmentation is likely to create cross-generational transmittable variations in movement characteristics.  相似文献   

8.
Dispersal in Spatially Explicit Population Models   总被引:4,自引:0,他引:4  
Abstract: Ruckelshaus et al. (1997) outlined a simulation model of dispersal between patches in a fragmented landscape. They showed that dispersal success—the proportion of dispersers successfully locating a patch—was particularly sensitive to errors in dispersal mortality and concluded that this limits the utility of spatially explicit population models in conservation biology. I contend that, although they explored error propagation in a simple dispersal model, they did not explore how errors are propagated in spatially explicit population models, as no consideration of population processes was included. I developed a simple simulation model to investigate the effect of varying dispersal success on predictions of patch occupancy and population viability, the conventional outputs of spatially explicit population models. The model simulates births and deaths within habitat patches and dispersal as the transfer of individuals between them. Model predictions were sensitive to changes in dispersal success across a restricted range of within-patch growth rates, which depended on the dispersal initiation mechanism, patch carrying capacities, and number of generations simulated. Predictions of persistence and patch occupancy were generally more sensitive to changes in dispersal success (1) under presaturation rather than saturation dispersal; (2) at lower patch carrying capacities; and (3) over longer time periods. The framework I present provides a means of assessing, quantitatively, the regions of parameter space for which differences in dispersal success are likely to have a large effect on population model outputs. Investigating the effect of the representation of dispersal behavior within the demographic and landscape context provides a more useful assessment of whether our lack of knowledge is likely to cause unacceptable uncertainty in the predictions of spatially explicit population models.  相似文献   

9.
The connectivity of remnant patches of habitat may affect the persistence of species in fragmented landscapes. We evaluated the effects of the structural connectivity of forest patches (i.e., distance between patches) and matrix class (land-cover type) on the functional connectivity of 3 bird species (the White-crested Elaenia [Elaenia albiceps], the Green-backed Firecrown Hummingbird [Sephanoides sephaniodes], and the Austral Thrush [Turdus falklandii]). We measured functional connectivity as the rate at which each species crossed from one patch to another. We also evaluated whether greater functional connectivity translated into greater ecological connectivity (dispersal of fruit and pollen) by comparing among forest patches fruit set of a plant pollinated by hummingbirds and abundance of seedlings and adults of 2 plants with bird- and wind-dispersed seeds. Interpatch distance was strongly associated with functional connectivity, but its effect was not independent of matrix class. For one of the bird-dispersed plants, greater functional connectivity for White-crested Elaenias and Austral Thrushes (both frugivores) was associated with higher densities of this plant. The lack of a similar association for the wind-dispersed species suggests this effect is linked to the dispersal vector. The abundance of the hummingbird-pollinated species was not related to the presence of hummingbirds. Interpatch distance and matrix class affect animal movement in fragmented landscapes and may have a cascading effect on the distribution of some animal-dispersed species. On the basis of our results, we believe effort should be invested in optimizing patch configuration and modifying the matrix so as to mitigate the effects of patch isolation in fragmented landscapes.  相似文献   

10.
Yaari G  Ben-Zion Y  Shnerb NM  Vasseur DA 《Ecology》2012,93(5):1214-1227
Recent theory and experimental work in metapopulations and metacommunities demonstrates that long-term persistence is maximized when the rate at which individuals disperse among patches within the system is intermediate; if too low, local extinctions are more frequent than recolonizations, increasing the chance of regional-scale extinctions, and if too high, dynamics exhibit region-wide synchrony, and local extinctions occur in near unison across the region. Although common, little is known about how the size and topology of the metapopulation (metacommunity) affect this bell-shaped relationship between dispersal rate and regional persistence time. Using a suite of mathematical models, we examined the effects of dispersal, patch number, and topology on the regional persistence time when local populations are subject to demographic stochasticity. We found that the form of the relationship between regional persistence time and the number of patches is consistent across all models studied; however, the form of the relationship is distinctly different among low, intermediate, and high dispersal rates. Under low and intermediate dispersal rates, regional persistence times increase logarithmically and exponentially (respectively) with increasing numbers of patches, whereas under high dispersal, the form of the relationship depends on local dynamics. Furthermore, we demonstrate that the forms of these relationships, which give rise to the bell-shaped relationship between dispersal rate and persistence time, are a product of recolonization and the region-wide synchronization (or lack thereof) of population dynamics. Identifying such metapopulation attributes that impact extinction risk is of utmost importance for managing and conserving the earth's evermore fragmented populations.  相似文献   

11.
Conservation of Fragmented Populations   总被引:38,自引:0,他引:38  
In this paper we argue that landscape spatial structure is of central importance in understanding the effects of fragmentation on population survival. Landscape spatial structure is the spatial relationships among habitat patches and the matrix in which they are embedded. Many general models of subdivided populations make the assumptions that (1) all habitat patches are equivalent in size and quality and (2) all local populations (in the patches) are equally accessible by dispersers. Models that gloss over spatial details of landscape structure can be useful for theoretical developments but will almost always be misleading when applied to real-world conservation problems. We show that local extinctions of fragmented populations are common. From this it follows that recolonization of local extinctions is critical for regional survival of fragmented populations. The probability of recolonization depends on (1) spatial relationships among landscape elements used by the population, including habitat patches for breeding and elements of the inter-patch matrix through which dispersers move, (2) dispersal characteristics of the organism of interest, and (3) temporal changes in the landscape structure. For endangered species, which are typically restricted in their dispersal range and in the kinds of habitat through which they can disperse, these factors are of primary importance and must be explicitly considered in management decisions.  相似文献   

12.
Territories are often aggregated. Because of this, distance to neighbours should influence how territory-holders balance safety from predators with the use and defence of resources. I examined the influence of distance to a neighbour on refuge use by pairs of convict cichlids (Archocentrus nigrofasciatus) faced with a conflict between hiding and defending food patches. Neighbours could reduce the rate of intrusions by strangers as a by-product of their own resource defence. This should allow fish with near neighbours to spend more time in the refuge. Neighbours could also steal from patches that are left undefended. This should lead to a reduction in use of the refuge. When one fish was confined to its refuge (so that its patch was undefended), theft by the other increased as inter-patch distance decreased. Distance between patches did not influence the rate of intrusion by non-territorial fish. When both fish defended patches, body mass influenced the effect of inter-patch distance on refuge use. Large fish rarely used the refuge, but small territory-holders spent more time in the refuge when patches were close together, as predicted. However, when one fish was dominant at both patches, distance between patches did not influence refuge use. These results suggest that, despite increased opportunity for theft, there is no realised foraging or defensive benefit to settling near neighbours that are of similar competitive ability.Communicated by J. Krause  相似文献   

13.
Abstract: Determining the permeability of different types of landscape matrices to animal movement is essential for conserving populations in fragmented landscapes. We evaluated the effects of habitat patch size and matrix type on diversity, isolation, and dispersal of ithomiine butterflies in forest fragments surrounded by coffee agroecosystems in the Colombian Andes. Because ithomiines prefer a shaded understory, we expected the highest diversity and abundance in large fragments surrounded by shade coffee and the lowest in small fragments surrounded by sun coffee. We also thought shade coffee would favor butterfly dispersal and immigration into forest patches. We marked 9675 butterflies of 39 species in 12 forest patches over a year. Microclimate conditions were more similar to the forest interior in the shade‐coffee matrix than in the sun‐coffee matrix, but patch size and matrix type did not affect species richness and abundance in forest fragments. Furthermore, age structure and temporal recruitment patterns of the butterfly community were similar in all fragments, independent of patch size or matrix type. There were no differences in the numbers of butterflies flying in the matrices at two distances from the forest patch, but their behavior differed. Flight in the sun‐coffee matrix was rapid and directional, whereas butterflies in shade‐coffee matrix flew slowly. Seven out of 130 recaptured butterflies immigrated into patches in the shade‐coffee matrix, and one immigrated into a patch surrounded by sun coffee. Although the shade‐coffee matrix facilitated movement in the landscape, sun‐coffee matrix was not impermeable to butterflies. Ithomiines exhibited behavioral plasticity in habitat use and high mobility. These traits favor their persistence in heterogeneous landscapes, opening opportunities for their conservation. Understanding the dynamics and resource requirements of different organisms in rural landscapes is critical for identifying management options that address both animals’ and farmers’ needs.  相似文献   

14.
The identity of an individual patch as a source or a sink within a metapopulation is a function of its ability to produce individuals and to disperse them to other patches. In marine systems patch identity is very often defined by dispersal ability alone—upstream patches are sources—while issues of variable habitat quality (which affects local production) are ignored. This can have important ramifications for the science of marine reserve siting. This study develops a spatially explicit source–sink metapopulation model for reef fish and uses it to evaluate the relative importance of connectivity versus demography and how this depends upon the level of local larval retention and the strength of density-dependent recruitment. Elasticity analyses indicated that patch contribution (source or sink) was more sensitive to demographic parameters (particularly survival) than connectivity and this effect was conserved even under strong levels of density-dependence and was generally strengthened as local retention increased. Variability in the relationship between parameter elasticity and local retention was shown to be dependent upon the magnitude of connectivity for an individual patch relative to a critical connectivity value. The proportion of larvae lost due to transport processes was an important parameter which directly affected the magnitude of this critical connectivity value. Patches with connectivity values less than the critical value contributed to the metapopulation largely via production (i.e., local demographics most important). As local retention increased, so did the importance of demographic parameters in these patches. Patches with connectivity values greater than the critical value contributed largely via dispersal of larvae and thus the importance of local demographics decreased as local retention increased.  相似文献   

15.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

16.
Using network centrality measures to manage landscape connectivity   总被引:2,自引:0,他引:2  
We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch, and the other accounts for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree and betweenness centrality are widely spread, while patches with high subgraph and closeness centrality are clumped together in dense clusters. This finding may enable multispecies analyses of single-species network models.  相似文献   

17.
Parejo D  White J  Clobert J  Dreiss A  Danchin E 《Ecology》2007,88(9):2373-2382
Public information (PI), which is the information that can be derived from the behavior and performance of conspecifics, has been demonstrated to be used in many fitness-enhancing decisions. In the context of breeding habitat choice, PI use has been called "habitat copying." We experimentally tested the existence of habitat copying in the Blue Tit (Cyanistes caeruleus), a nonmigratory, short-lived hole-nesting bird. We manipulated the mean number of fledglings raised locally (quantity) and their condition (quality) as components of PI by transferring nestlings from Decreased (D) patches to Increased (I) patches. Our manipulations caused a negative relationship between fledgling quantity and quality that does not exist naturally: I patches had a higher number of fledglings that were in poorer condition, whereas D patches had a lower number in better condition. Control (C) patches, whether manipulated or not, had intermediate levels in terms of fledgling quantity and quality. Adult emigration the following year was higher from D than from C or I patches. Similarly, adult dispersal distance decreased for individuals coming from D to C to I patches. This suggests that resident breeders rely mainly on fledgling quantity to make emigration decisions. Emigration patterns of juveniles did not vary in relation to our patch manipulation. Immigration rates were higher and similar in I and D patches than in C patches. Hence, immigrant Blue Tits seem to rely on one of the manipulated components of PI and are insensitive to the discrepancy between fledgling quantity and quality. This shows that even nonmigratory species, such as Blue Tits, may use PI in their dispersal decisions but weigh its components differently for emigration and immigration. Differences among species in the importance of PI in breeding habitat choices may be explained by differences in life histories.  相似文献   

18.
Distribution patterns of plants are affected by human activities such as creation, destruction or modification of habitats. However, another important question is to what extent humans shape plant distributions by acting as dispersal vectors. In order to answer this question we developed a simulation model for the spread of plant species between human settlements. This was done on the basis of extensive sociological and ecological data on a regional scale. With regard to the sociological data, human movement behaviour defined the amount of exchange between the settlements. Gardening types represented the potential habitat in our model. The ecological data was derived from a vegetation survey carried out in 2003, which was a repeat of a survey between 1974 and 1981 along the same transects. From these surveys, we studied the distributions of 13 species in 67 settlements. In our model, the earlier survey provided the data for the initial distribution. The simulated pattern was consequently compared with the distribution pattern in 2003. In the model, dispersal kernels based on patterns of human movement between settlements led to a better match with the distribution patterns than a null model simulating pure distance dependent dispersal for all species. This was statistically significant for seven of the thirteen species. A striking result was that alien species seem to benefit more from human dispersal than native species. We emphasize the importance of the sociological data on human movement behaviour in parameterizing our regional scale model. This study provides quantitative evidence on the impact of human movement behaviour on the distribution of plant species in suburban areas.  相似文献   

19.
Abstract: Corridors have been proposed to reduce isolation and increase population persistence in fragmented landscapes, yet little research has evaluated the types of landscapes in which corridors will be most effective. I tested the hypothesis that corridors increase patch colonization by a butterfly, Junonia coenia , regardless of the butterfly's initial distance from a patch. I chose J. coenia because it has been shown to move between patches preferentially through corridors. Individuals were released 16–192 m away from open experimental patches into adjacent open corridors or forest. Neither corridors nor distance had a significant effect on patch colonization, but there was a significant interaction between the presence or absence of corridors and distance. At small distances (16–64 m), J. coenia was more likely to colonize open patches when released within forest than within open corridors, most likely because J. coenia used corridors as habitat. Nevertheless, patch colonization by butterflies released within forest decreased rapidly as distance from patches increased, as predicted by a null model of random movement. Colonization did not change with distance in the corridor, and at long distances (128–192 m), butterflies released in corridors were twice as likely to colonize open patches as those released in forest. These results suggest that one critical factor, interpatch distance, may determine the relative effectiveness of corridors and other landscape configurations, such as stepping stones, in reducing isolation in fragmented landscapes. When distances between patches are short compared to an animal's movement ability, a stepping stone approach may most effectively promote dispersal. Alternatively, the conservation value of corridors is highest relative to other habitat configurations when longer distances separate patches in fragmented landscapes.  相似文献   

20.
Abstract: We investigated the persistence of three medium-sized (2–9 kg), rare forest mammals in the fragmented mist-belt Podocarpus forests of the midlands of KwaZulu-Natal Province, South Africa. We recorded patch occupancy of blue duiker (   Philantomba monticola ), tree hyrax (   Dendrohyrax arboreus ), and samango monkey ( Cercopithecus mitis labiatus ) in 199 forest patches. Their rarity is ascribed to the fragmentation and destruction of their forest habitat. Incidence functions, derived from presence and absence data, were formulated as generalized linear models, and environmental effects were included in the fitted logistic models. The small and mostly solitary hyrax and duiker persisted in smaller patches than the large and social monkey. Although this result follows expectations based on relative home-range sizes of each species, the incidence probability of the samango monkey was invariant with increasing isolation, whereas a gradual decrease with increasing isolation was observed for the hyrax and duiker. Group dynamics may inhibit dispersal and increase the isolation effect in social species such as samango monkeys. A mainland-island metapopulation model adequately describes patterns of patch occupancy by the hyrax and duiker, but the monkeys' poor dispersal ability and obvious area-dependent extirpation suggest that they exist in transient, nonequilibrium (declining) metapopulations. Through identification of large forest patches for careful protection and management, the survival of all three species—especially the monkey—could be prolonged. Because no functional metapopulation may exist for the monkey, however, this is an emergency measure. For the duiker and hyrax, larger patches should form part of a network of smaller and closer patches in a natural matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号