首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeiter M  Stampfli A  Newbery DM 《Ecology》2006,87(4):942-951
Species coexistence and local-scale species richness are limited by the availability of seeds and microsites for germination and establishment. We conducted a seed addition experiment in seminatural grassland at three sites in southern Switzerland and repeated the experiment in two successive years to evaluate various circumstances under which seed limitation and establishment success affect community functioning. A collection of 144,000 seeds of 22 meadow species including grasses and forbs of local provenance was gathered, and seeds were individually sown in a density that resembled natural seed rain. The three communities were seed limited. Three years after sowing, single species varied in emergence (0-50%), survival (0-69%), and establishment rates (0-27%). One annual and 13 perennial species reached reproductive stage. Low establishment at one site and reduced growth at another site indicated stronger microsite limitation compared to the third site. Recruitment was influenced by differences in abiotic environmental conditions between sites (water availability, soil minerals) and by within-site differences in biotic interaction (competition). At the least water-limited site, sowing resulted in an increase in phytomass due to establishment of short-lived perennials in the second and third years after sowing. This increase persisted over the following two years due to establishment of longer-lived perennials. After sowing in a wetter year with higher phytomass, however, productivity did not increase, because higher intensity of competition in an early phase of establishment resulted in less vigorous plants later on. Due to the generally favorable weather conditions during this study, sowing year had a small effect on numbers of established individuals over all species. Recruitment limitation can thus constrain local-scale species richness and productivity, either by a lack of seeds or by reduced seedling growth, likely due to competition from the established vegetation.  相似文献   

2.
Abstract:   Livestock grazing is the most ubiquitous land use in western North America, yet it rarely has been studied in a controlled manner because of the lack of large areas free of grazing. We compared the ecological effects of three grazing treatments—long-term protection, short-term protection, and currently grazed—at Chaco Culture National Historic Park in northern New Mexico. Chaco has a long history of human habitation and is now one of the largest grazing exclosures in the American West. We studied the effects of livestock grazing on the cover of plants, soil crusts, and plant species richness at six sites with different potential natural vegetation. Species richness was higher under long-term protection than under current grazing at all six sites. Trends in shrub and grass response varied significantly across the six sites. Shrub cover increased with long-term protection at four upland sites, and grass cover increased with protection at four sites. The response of Chaco vegetation to release from grazing varied significantly according to each site's ecological potential, determined in part by edaphic and topographic characteristics. These nuances in vegetation response represent natural ecological variation and contrast with the notions of widespread shrub "invasion" often inferred in the past.  相似文献   

3.
在中国东南部的全尺度复合垂直流人工湿地中开展2年的植物多样性实验,以研究植物多样性(包括植物物种丰富度和植物组成)对群落生产力与多样性效应(即互补效应、选择效应和净多样性效应)的影响及其产生机制。结果表明,2007年物种丰富度与群落生产力呈线形正相关,而2008年显著的单峰格局,其关系式为:y=-0.213x2+3.455x+15.192(R=0.215)。2008年物种丰富度与互补效应呈显著地线形负相关,而2007年呈单峰格局,其关系式为:y=-0.389x2+6.974x-10.707(R=0.247),而且2007年与2008年的互补效应与生产力都呈显著的正相关,表明互补效应对生产力的提高有重要作用。然而,2007年与2008年物种丰富度与选择效应之间均没有显著相关性,且选择效应与群落生产力之间也没有显著相关性,表明选择效应对生产力的提高作用不显著。2007年与2008年中物种组成对生产力、互补效应、选择效应与净多样性效应均有显著影响,说明人工湿地的植物配置对其生态系统功能的维持尤为重要。2008年物种丰富度与净多样性效应呈极显著地线形负相关,而2007年呈显著单峰格局,其关系式为:y=-0.329 x2+5.968 x-12.659(R=0.234),这种趋势主要是由于植物多样性-生态系统功能关系的影响因素(如物种的竞争力和生态位)在2年中有所变化。同时,2007年与2008年的多样性净效应与生产力都呈显著正相关关系,表明生产力与多样性净效应的变化趋势是同步的。与抽样效应假说不同的是,本实验中单种最高产物种(芦竹)在混种时没有表现出高产,主要是由于生长的分配、资源的竞争力与环境的变化等。  相似文献   

4.
Myers JA  Harms KE 《Ecology》2011,92(3):676-686
Two prominent mechanisms proposed to structure biodiversity are niche-based ecological filtering and chance arrival of propagules from the species pool. Seed arrival is hypothesized to play a particularly strong role in high-diversity plant communities with large potential species pools and many rare species, but few studies have explored how seed arrival and local ecological filters interactively assemble species-rich communities in space and time. We experimentally manipulated seed arrival and multiple ecological filters in high-diversity, herbaceous-dominated groundcover communities in longleaf pine savannas, which contain the highest small-scale species richness in North America (up to > 40 species/m2). We tested three hypotheses: (1) local communities constitute relatively open-membership assemblages, in which increased seed arrival from the species pool strongly increases species richness; (2) ecological filters imposed by local fire intensity and soil moisture influence recruitment and richness of immigrating species; and (3) ecological filters increase similarity in the composition of immigrating species. In a two-year factorial field experiment, we manipulated local fire intensity by increasing pre-fire fuel loads, soil moisture using rain shelters and irrigation, and seed arrival by adding seeds from the local species pool. Seed arrival increased species richness regardless of fire intensity and soil moisture but interacted with both ecological filters to influence community assembly. High-intensity fire decreased richness of resident species, suggesting an important abiotic filter. In contrast, high-intensity fire increased recruitment and richness of immigrating species, presumably by decreasing effects of other ecological filters (competition and resource limitation) in postfire environments. Drought decreased recruitment and richness of immigrating species, whereas wet soil conditions increased recruitment but decreased or had little effect on richness. Moreover, some ecological filters (wet soil conditions and, to a lesser extent, high-intensity fire) increased similarity in the composition of immigrating species, illustrating conditions that influence deterministic community assembly in species-rich communities. Our experiment provides insights into how dispersal-assembly mechanisms may interact with niche-assembly mechanisms in space (spatial variation in disturbance) and time (temporal variation in resource availability) to structure high-diversity communities and can help guide conservation of threatened longleaf pine ecosystems in the face of habitat fragmentation and environmental change.  相似文献   

5.
Swemmer AM  Knapp AK 《Ecology》2008,89(10):2860-2867
The aboveground net primary productivity (ANPP) of grass communities in grasslands and savannas is primarily determined by precipitation quantity. Recent research, motivated by predictions of changes in the distribution of rainfall events by global climate change models, indicates that ANPP may be affected by rainfall distribution as much as by annual totals. Grazing and community composition are also known to affect grassland ANPP. The manner in which interactions between rainfall distribution, grazing, and community composition affect the relationship between precipitation and ANPP represents a critical knowledge gap. The effects of community composition and grazing on aboveground growth responses to intraseasonal variation in water availability were investigated at seven grassland sites with a nonselective clipping experiment. The aboveground growth of the dominant C4 species at each site was measured at regular intervals for 2-3 growing seasons in the presence or absence of regular defoliation. In the absence of defoliation, there was a general lack of synchrony of intraseasonal growth among co-occurring species. Variation in growth rates was high and was only partially explained by variation in rainfall. Regular defoliation increased growth synchrony at all sites, but changes in growth responses to rainfall varied between sites. These results suggest that community composition will be important in determining ANPP-precipitation relationships under conditions of altered rainfall distribution. However this effect appears to be a result of species responding differently to soil water or other resources rather than to rainfall per se. Grazing may override the effects of community composition by reducing differences in growth patterns between species and has the potential to weaken precipitation controls on ANPP.  相似文献   

6.
Howe HF  Zorn-Arnold B  Sullivan A  Brown JS 《Ecology》2006,87(12):3007-3013
We ask whether vole herbivory in experimental grassland plots is sufficient to create an unpalatable community. In a six-year experiment, meadow voles (Microtus pennsylvanicus) reduced plant standing crop between 30% and 72%, well within the range of ungulate effects. Moreover, meadow voles reduced their available forage species by changing the plant community composition: four grass species and a legume upon which they foraged declined sharply in cover and/or number of individuals, five forbs avoided by voles increased, and two forbs neither declined nor increased with either measure. Reductions of diversity occurred when voles first defoliated the plots in 2000 but disappeared as plant species avoided by voles replaced vulnerable plants. Within six years, meadow voles created plant communities dominated by species that they did not eat.  相似文献   

7.
Moore SM  Borer ET 《Ecology》2012,93(5):1095-1105
Spatial patterns of pathogen prevalence are determined by ecological processes acting across multiple spatial scales. Host-pathogen interactions are influenced by community composition, landscape structure, and environmental factors. Explaining prevalence patterns requires an understanding of how local determinants of infection, such as community composition, are mediated by landscape characteristics and regional-scale environmental drivers. Here we investigate the role of local community interactions and the effects of landscape structure on the dynamics of barley and cereal yellow dwarf viruses (B/CYDV) in the open meadows of the Cascade Mountains of Oregon. B/CYDV is an aphid-transmitted, generalist pathogen of over 100 wild and cultivated grass species. We used variance components analysis and model selection techniques to partition the sources of variation in B/CYDV prevalence and to determine which abiotic and biotic factors influence host-pathogen interactions in a Cascades meadowsystem. B/CYDV prevalence in Cascades meadows varied by host species identity, with a significantly higher proportion of infected Festuca idahoensis individuals than Elymus glaucus or Bromus carinatus. Although there was significant variation in prevalence among host species and among meadows in the same meadow complex, there was no evidence of any significant variation in prevalence among different meadow complexes at a larger spatial scale. Variation in prevalence among meadows was primarily associated with the local community context (host identity, the relative abundance of different host species, and host species richness) and the physical landscape attributes of the meadow. These results highlight the importance of local host community composition, mediated by landscape characteristics such as meadow aspect, as a determinant of the spatial pattern of infection of a multi-host pathogen.  相似文献   

8.
徐粒  高琼  王亚林 《生态环境》2014,(3):398-405
以内蒙古太仆寺旗地区典型克氏针茅-羊草草原为研究对象,通过调查围封6年后围栏内外典型草原群落特征,分析围封、放牧处理下典型草原植物群落结构及地上生物量的动态变化,揭示围封放牧对植被群落结构、物种丰富度和地上生物量的影响。结果发现,在围封6年后,各功能群物种丰富度与盖度围栏内外的空间变化趋势基本一致。群落物种丰富度和地上生物量均随坡位下降而显著增加,初步显示了物种多样性与生态系统功能的空间变化的一致性。围栏内物种丰富度显著低于围栏外,而地上生物量却显著大于围栏外。围栏内多年生禾草、一年生植物物种丰富度显著低于围栏外,而半灌木盖度、生物量显著高于围栏外。围栏内外在禁牧和放牧不同处理下,表现出不同的草原退化方式:在禁牧条件下,尽管生物量有所恢复,但灌木和半灌木的增加却代表了草原的退化;放牧、刈割等人类活动增加了耐牧物种和不适口植物生长的可能,表现为草原退化指示物种增加,同样是草原退化的表现。围栏外一年生植物盖度和生物量显著高于围栏内,而一年生植物的频数也远远大于围栏内(围栏内外频数比13:71),且独行菜、猪毛菜等仅出现于围栏外。同时,地上生物量随着物种丰富度的增加而增加,但只有围栏外的关系达到统计显著程度,说明围封调制了生物多样性与生态系统功能的关系。本研究表明,对于干旱半干旱典型草原的恢复,不能简单地采用长期完全禁牧措施,应当根据区域环境、植被以及社会经济情况,制定季节性放牧或者间歇性禁牧的恢复措施,从而保证草场的可持续性恢复利用。  相似文献   

9.
Abstract: The Everglades in southern Florida, U.S.A., is a major focus of conservation activities. The freshwater wetlands of the Everglades do not have high species richness, and no species of threatened aquatic animals or plants live there. We have, however, identified a distinctive ecological feature of the Everglades that is threatened by canal construction, draining, and nutrient enrichment from agricultural runoff. Compared to values reported from other freshwater systems, standing stocks of periphyton in relatively undisturbed areas of the Everglades were unusually high, and standing stocks of invertebrates and fish were unusually low. Averaging data gathered from nine sites and five sampling periods spanning 1 year, we found that periphyton standing crop was 88.2 g/m2 (ash-free dry mass), invertebrate standing stock was 0.64 g/m2 (dry mass), and fish standing stock was 1.2 g/m2 (dry mass of large and small species combined). We found that fish standing stocks were much higher in phosphorus-enriched sites than in nearby reference sites but that invertebrate standing stocks were similar in enriched and reference sites. Our results support the notion that oligotrophy is at least partially responsible for the low standing stocks of fish, but they also suggest that species interactions and a paucity of deep-water refugia are important. Anthropogenic eutrophication in Everglades marshes will lead to the loss of distinctive ecosystem features. A focus on species richness and "hot spots" of threatened species provides no basis for conservation of ecosystems like the Everglades. If oligotrophic ecosystems often have low species richness, they will be underrepresented in preservation networks based on some common criteria for establishing conservation priorities.  相似文献   

10.
DeClerck FA  Barbour MG  Sawyer JO 《Ecology》2006,87(11):2787-2799
Theoretical and empirical studies have long suggested that stability and complexity are intimately related, but evidence from long-lived systems at large scales is lacking. Stability can either be driven by complex species interactions, or it can be driven by the presence/absence and abundance of a species best able to perform a specific ecosystem function. We use 64 years of stand productivity measures in forest systems composed of four dominant conifer tree species to contrast the effect of species richness and abundance on three stability measures. To perform this contrast, we measured the annual growth increments of > 900 trees in mixed and pure forest stands to test three hypotheses: increased species richness will (1) decrease stand variance, (2) increase stand resistance to drought events, and (3) increase stand resilience to drought events. In each case, the alternate hypothesis was that species richness had no effect, but that species composition and abundance within a stand drove variance, resistance, and resilience. In pure stands, the four species demonstrated significant differences in productivity, and in their resistance and resilience to drought events. The two pine species were the most drought resistant and resilient, whereas mountain hemlock was the least resistant and resilient, and red fir was intermediate. For community measures we found a moderately significant (P = 0.08) increase in the community coefficient of variation and a significant (P = 0.03) increase in resilience with increased species richness, but no significant relationship between species richness and community resistance, though the variance in community resistance to drought decreased with species richness. Community resistance to drought was significantly (P = 0.001) correlated to the relative abundance of lodgepole pine, the most resistant species. We propose that resistance is driven by competition for a single limiting resource, with negative diversity effects. In contrast resilience measures the capacity of communities to partition resources in the absence of a single limiting resource, demonstrating positive diversity effects.  相似文献   

11.
Savannas are ecosystems characterized by the coexistence of woody species (trees and bushes) and grasses. Given that savanna characteristics are mainly formed from competition, herbivory, fire, woodcutting, and patchy soil and precipitation characteristics, we propose a spatially explicit model to examine the effects of the above-mentioned parameters on savanna vegetation dynamics in space and time. Furthermore, we investigate the effects of the above-mentioned parameters on tree–bush–grass ratios, as well as the degrees of aggregation of tree–bush–grass biomass. We parameterized our model for an arid savanna with shallow soil depth as well as a mesic one with generally deeper and more variable soil depths. Our model was able to reproduce savanna vegetation characteristics for periods of time over 2000 years with daily updated time steps. According to our results, tree biomass was higher than bush biomass in the arid savanna but bush biomass exceeded tree and grass biomass in the simulated mesic savanna. Woody biomass increased in our simulations when the soil's porosity values were increased (mesic savanna), in combination with higher precipitation. Savanna vegetation varied from open savanna to woodland and back to open savanna again. Vegetation cycles varied over ∼300-year cycles in the arid and ∼220-year cycles in the mesic-simulated savanna. Autocorrelation values indicated that there are both temporal and spatial vegetation cycles. Our model indicated cycling savanna vegetation at the landscape scale, cycles in cells, and patchiness, i.e. patch dynamics.  相似文献   

12.
Cadotte MW 《Ecology》2006,87(4):1008-1016
Large-scale processes are known to be important for patterns of species richness, yet the ways in which local and larger scale processes interact is not clear. I used metacommunities consisting of five interconnected microbial aquatic communities to examine the manner in which processes at different scales affect local and metacommunity richness. Specifically, I manipulated the potential dispersal rate, whether dispersal was localized or global, and variation in initial community composition. A repeated-measures ANOVA showed that a low dispersal rate and intermediate distance dispersal enhanced local richness. Initial assembly variation had no effect on local richness, while a lack of dispersal or global dispersal reduced local richness. At the metacommunity scale, richness was enhanced throughout the time course of the experiment by initial compositional variation and was reduced by high or global dispersal. The effects of dispersal were contingent on the presence of initial compositional variation. The treatments also affected individual species occupancy patterns, with some benefiting from large-scale processes and others being adversely impacted. These results indicate that the effects of dispersal on species richness have a complex relationship with scale and are not solely divisible into "regional" vs. "local" scales. Finally, predictions of the manner in which dispersal rate structures communities appear dependent upon species compositional variation among communities.  相似文献   

13.
I investigated the ability of predators to influence the patterns of species richness and abundance of non-piscivorous fishes on small, artificial reefs replenished by natural recruitment. Periodic removal of predators effectively reduced the species richness and abundance of predators on removal reefs. The difference between the number of predators on control and removal reefs was greatest immediately following the removal of predators and attenuated between removals. During periods of recruitment, species richness and total abundance of recently-recruited, non-piscivorous fishes were generally greater on predator-removal reefs than on control reefs. Species richness and total abundance of resident non-piscivorous fishes were not affected by the removal of predators in the first year of the experiment. Both abundance and species richness of residents, however, were greater on the removal reefs during the second year of the experiment. The difference in the responses of the two age classes to the removal of predators suggests that predators may affect community patterns of older age classes through time-lagged effects on the survivorship of younger age classes. At the end of the experiment, species richness was positively related to abundance for recruits and residents. The effects of removing piscivorous fishes on the abundance of non-piscivorous fishes were similar for species considered separately. A greater number of species of recruit and resident fishes were more abundant on reefs from which predators had been removed. These data suggest that predators can play an important role in structuring communities of fishes on coral reefs.  相似文献   

14.
Debate on the relationship between diversity and stability has been driven by the recognition that species loss may influence ecosystem properties and processes. We conducted a litterbag experiment in the Scottish Highlands, United Kingdom, to examine the effects of altering plant litter diversity on decomposition, microbial biomass, and microfaunal abundance. The design of treatments was fully factorial and included five species from an upland plant community (silver birch, Betula pendula; Scots' pine, Pinus sylvestris; heather, Calluna vulgaris; bilberry, Vaccinium myrtillus; wavy-hair grass, Deschampsia flexuosa); species richness ranged from one to five species. We tested the effects of litter species richness and composition on variable means, whether increasing litter species richness reduced variability in the decomposer system, and whether any richness-variability relationships were maintained over time (196 vs. 564 days). While litter species composition effects controlled variable means, we revealed reductions in variability with increasing litter species richness, even after accounting for differences between litter types. These findings suggest that higher plant species richness per se may result in more stable ecosystem processes (e.g., decomposition) and decomposer communities. Negative richness-variation relationships generally relaxed over time, presumably because properties of litter mixtures became more homogeneous. However, given that plant litter inputs continue to enter the belowground system over time, we conclude that variation in ecosystem properties may be buffered by greater litter species richness.  相似文献   

15.
Emery SM  Gross KL 《Ecology》2007,88(4):954-964
While there has been extensive interest in understanding the relationship between diversity and invasibility of communities, most studies have only focused on one component of diversity: species richness. Although the number of species can affect community invasibility, other aspects of diversity, including species identity and community evenness, may be equally important. While several field studies have examined how invasibility varies with diversity by manipulating species identity or evenness, the results are often confounded by resource heterogeneity, site history, or disturbance. We designed a mesocosm experiment to examine explicitly the role of dominant species identity and evenness on the invasibility of grassland plant communities. We found that the identity of the dominant plant species, but not community evenness, significantly impacted invasibility. Using path analysis, we found that community composition (dominant species identity) reduced invasion by reducing early-season light availability and increasing late-season plant community biomass. Nitrogen availability was an important factor for the survival of invaders in the second year of the experiment. We also found significant direct effects of certain dominant species on invasion, although the mechanisms driving these effects remain unclear. The magnitude of dominant species effects on invasibility we observed are comparable to species richness effects observed in other studies, showing that species composition and dominant species can have strong effects on the invasibility of a community.  相似文献   

16.
Marine macroalgae are believed to be among the most productive autotrophs in the world. However, relatively little information exists about spatial and temporal variation in net primary production (NPP) by these organisms. The data presented here are being collected to investigate patterns and causes of variation in NPP by the giant kelp, Macrocystis pyrifera, which is believed to be one of the fastest growing autotrophs on earth. The standing crop and loss rates of M. pyrifera have been measured monthly in permanent plots at three sites in the Santa Barbara Channel, USA. Collection of these data began in June 2002 and is ongoing. Seasonal estimates of NPP and growth rate are made by combining the field data with a model of kelp dynamics. The purpose of this Data Paper is to make available a time series of M. pyrifera NPP, growth, and standing crop that is appropriate for examining seasonal and interannual patterns across multiple sites. Data on plant density in each plot and censuses of fronds on tagged plants at each site are also made available here. NPP, mass-specific growth rate, and standing crop are presented in four different metrics (wet mass, dry mass, carbon mass, and nitrogen mass) to facilitate comparisons with previous studies of M. pyrifera and with NPP measured in other ecosystems. Analyses of these data reveal seasonal cycles in growth and standing crop as well as substantial differences in M. pyrifera NPP among sites and years.  相似文献   

17.
Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18–22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land‐use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working‐landscape area below which further loss of working‐landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern. Contribución de la Expansión Urbana y un Clima Cambiante a la Declinación de la Fauna de Mariposas  相似文献   

18.
Abstract:  We studied the potential for native birds to control insect pests on farms. We assessed habitat factors correlated with diversity, distribution, and insect-foraging activity of native birds on farms in north-central Florida and then characterized common bird species that consumed insect biomass in crops as "functional insectivores" (birds most likely to contribute to pest control). Analyses of point-count survey data and foraging observations collected over 2 years on paired organic and conventional farm sites indicated that (1) farms supported most (82–96%) land birds known to breed in the region; (2) bird species richness and abundance varied significantly with matrix habitat and field border type (but not with year or farm management type); (3) the highest bird abundances were associated with mixed crop plantings, field borders, and adjacent matrix composed of forest and hedge; and (4) abundances of 10 species identified as functional insectivores were primarily influenced by crop type (mixed crops attracted significantly more insect foragers into fields than monocrops). We documented birds eating pest insects in crops and did not observe substantive crop damage by birds during growing-season observations. We advocate use of the term functional insectivore to emphasize the potential positive role of avian insectivory on farms during the growing season.  相似文献   

19.
Ejrnaes R  Bruun HH  Graae BJ 《Ecology》2006,87(5):1225-1233
It is hard to defend the view that biotic communities represent a simple and predictable response to the abiotic environment. Biota and the abiotic environment interact, and the environment of an individual certainly includes its neighbors and visitors in the community. The complexity of community assembly calls forth a quest for general principles, yet current results and theories on assembly rules differ widely. Using a grassland microcosm as a model system, we manipulated fertility, disturbance by defoliation, soil/microclimate, and arrival order of species belonging to two groups differing in functional attributes. We analyzed the outcome of community assembly dynamics in terms of species richness, invasibility, and species composition. The analyses revealed strong environmental control over species richness and invasibility. Species composition was mainly determined by the arrival order of species, indicating that historical contingency may change the outcome of community assembly. The probability for multiple equilibria appeared to increase with productivity and environmental stability. The importance of arrival order offers an explanation of the difficulties in predicting local occurrences of species in the field. In our experiment, variation in fertility and disturbance was controlling colonization with predictable effects on emergent community properties such as species richness. The key mechanism is suggested to be asymmetric competition, and our results show that this mechanism is relatively insensitive to the species through which it works. While our analyses indicate a positive and significant correlation between richness and invasibility, the significance disappears after accounting for the effect of the environment. The importance of arrival order (historical contingency) and environmental control supports the assumption of the unified neutral theory that different species within a trophic level can be considered functionally equivalent when it comes to community assembly. However, our results indicate that variation in asymmetric competition is the key factor determining the richness of the resulting communities, and this is far from neutral.  相似文献   

20.
Vaughn CC  Spooner DE  Galbraith HS 《Ecology》2007,88(7):1654-1662
We asked whether species richness or species identity contributed more to ecosystem function in a trait-based functional group, burrowing, filter-feeding bivalves (freshwater mussels: Unionidae), and whether their importance changed with environmental context and species composition. We conducted a manipulative experiment in a small river examining the effects of mussel assemblages varying from one to eight species on benthic algal standing crop across two sets of environmental conditions: extremely low discharge and high water temperature (summer); and moderate discharge and water temperature (fall). We found strong species identity effects within this guild, with one species (Actinonaias ligamentina) influencing accrual of benthic algae more than other species, but only under summer conditions. We suspect that this effect is due to a combination of the greater biomass of this species and its higher metabolic and excretion rates at warm summer temperatures, resulting in increased nitrogen subsidies to benthic algae. We also found that Actinonaias influenced the condition of other mussel species, likely through higher consumption, interference, or both. This study demonstrates that species within trait-based functional groups do not necessarily have the same effects on ecosystem properties, particularly under different environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号