首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The platinum group metals (PGM) Pt and Rh are emitted into the environment mainly by catalytic exhaust gas converters of cars and by effluents of hospitals, which use Pt based anti-cancer drugs. However, there is still a lack of information on the availability of these precious metals to the biosphere. As PGM accumulate in sediments of aquatic ecosystems we focused our study on the uptake of the noble metals by European eels, Anguilla anguilla. Therefore, eels were exposed in tap water and humic water containing Pt(4+) and Rh(3+) at a concentration of 170 and 260 microg/l, respectively. After an exposure period of 6 weeks the mean Pt levels in bile, liver, kidney and intestine of the exposed eels ranged between 68 ng/g and 840 ng/g and the mean Rh levels between 35 ng/g and 155 ng/g whereas the PGM levels of the unexposed controls were below the detection limit of 50 ng/g for Pt and 5 ng/g for Rh. Rh was also taken up by gill and spleen. No PGM uptake was found for muscle and blood. The pattern of metal distribution within the eel differed between Pt and Rh and was dependent on the water type. Due to their accumulation capacity for PGM eels are suitable as accumulation indicators to detect PGM pollution in aquatic ecosystems.  相似文献   

2.
Intention, Goal, Scope, Background  Following the introduction of automobile catalytic converters the platinum group metals (PGM) platinum (Pt), palladium (Pd) and rhodium (Rh) gain on increasing interest in environmental research as these metals are emitted with exhaust fumes into the environment. Consequently, elevated PGM levels were found in different environmental matrices uch as road dusts, soils along heavily frequented roads, sediments of urban rivers etc. Accordingly, the effects of increasing PGM emissions on the biosphere are controversially discussed. Objective  This paper summarizes the present knowledge on the biological availability of PGM to plants and animals. As biological availability is one of the most decisive factors determining the toxicologi-cal potential of xenobiotics, this information is very important to evaluate the possible threat of the noble metals to ecosystems. Results and Discussion  The availability of soluble as well as particle bound PGM to terrestrial plants was demonstrated in several studies. Experimental investigations revealed uptake of Pt, Pd and Rh also by aquatic plants. Additionally, the biological availability of the noble metals for animals has been verified in experimental studies using soluble metal salts, catalytic converter model substances, sediments of urban rivers, road dust or tunnel dust as metal sources. These studies refer mainly to aquatic animals. Beside of free living organisms, in particular worms parasitizing fish demonstrated a high potential to accumulate PGM. This could be of great interest in respect of biomonitoring purposes. Generally, for plants as well as for animals Pd turns out to be the best available metal among the PGM. Compared to other heavy metals, the biological availability of PGM from road dust to zebra mussels(Dreissena polymorpha) ranged between that of Cd and Pb. Conclusion  Especially chronic effects of PGM on the biosphere can not be excluded due to (1) their cumulative increase in the environment, (2) their unexpected high biological availability and bioaccumulation and (3) their unknown toxicological and ecotoxicological potential. However, it appears that acute effects on ecosystems due to anthropogenic PGM emission are not likely. Recommendation and Outlook  Research on environmental PGM contamination of the biosphere, especially the fauna, and on long-term toxiciry of low PGM concentrations is highly appreciated. These studies require very sensitive analytical techniques to determine PGM even in low sample amounts. Research has to be done in particular on reliable determination of (ultra) trace levels of Pd and Rh as the lack of data on these two metals is mainly due to analytical problems.  相似文献   

3.
Concentrations of As, Al, Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Sb, Sn, Sr, Tl, V and Zn were analyzed by inductively coupled mass spectrometry (ICP-MS) in the intestinal helminth Pomphorhynchus laevis and its host Barbus barbus. The fish were caught in the Danube river downstream of the city of Budapest (Hungary). Ten out of twenty one elements analyzed were found at higher concentrations in the acanthocephalan than in different tissues (muscle, intestine, liver and kidney) of barbel. Considering the fish tissues, most of the elements were present at highest concentrations in liver, followed by kidney, intestine and muscle. Spearman correlation analyses indicate that there is competition for metals between the parasites and the host. The negative relationships between parasite number and metal levels in organs of the barbel support this hypothesis. The bioconcentration factors for Ag, As, Ba, Bi, Cu, Ga, Mn, Pb, Sr, Tl, and Zn showed that the parasites concentrated metals to a higher degree than the fish tissues. They accumulated the metals As, Cd, Cu, Fe, Ni, Pb, Sr and Zn even better than established bioindicators such as the mussel Dreissena polymorpha as revealed by data from the literature. The results presented here emphasize that acanthocephalans of fish are very useful as sentinels for metal pollution in aquatic ecosystems. Ratio of metal concentrations in the parasites and the host tissues provide additional information. Not including acanthocephalans in accumulation bioindication studies with fishes (as still customarily done) may lead to false results.  相似文献   

4.
A number of authors have demonstrated that heavy metal concentrations in intestinal Helminths are higher than those found in the tissues of their final hosts. In this work, Pb and Cr concentrations in the Acanthocephalan Acanthocephalus anguillae were measured by means of electrothermal atomic absorption spectrometry. The metal concentrations measured in the whole body of Acanthocephalans were compared to those in the liver of their fish hosts (Leuciscus cephalus) sampled in the Lambro river (Northern Italy).The results show higher concentrations of Pb and Cr in the parasites, respectively 200 times and 60 times higher than that of the host liver.These results corroborate the usefulness of parasites in the monitoring of biologically available metal concentrations in aquatic ecosystems that are non severely polluted.  相似文献   

5.
The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.  相似文献   

6.
Non-point sources play an important role in metal emissions into surface waters. One of the most important non-point sources is automobile traffic. Recent studies determining traffic related heavy metals in surface waters have concentrated mainly on worst case scenarios by analyzing heavy metal loads in waters and sediments close to storm-water overflow inlets. The present study aims at identifying traffic related heavy metals in moderately polluted sites, as they occur in highly urbanized regions. Therefore, the concentrations of eight traffic related metals (Pt, Sb, Mo, Cd, Pb, Cu, Cr and Zn) were determined in sediment and crustacean samples from eight different aquatic habitats in the Ruhr district, Germany. Traffic related heavy metals could be identified in sediment and biota samples as a combination of heavy metals (Pt, Sb, Cd, Pb for sediments and Pt and Sb for crustacean samples). Pt concentrations received special attention due to the relatively recent occurrence of anthropogenically emitted Pt in the environment. At six sampling sites, Pt was detected in sediment and/or biota samples. The uptake of Pt compared to other traffic related heavy metals by Asellus aquaticus and Gammarus pulex is relatively high and can be compared with the uptake rates of essential metals like Zn.  相似文献   

7.
Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl4, PdSO4, RhCl3) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances.  相似文献   

8.
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host–parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.  相似文献   

9.
Potentially hazardous trace elements such as Cd, Cu, Cr, Ni and Zn are expected to accumulate in biosolids–amended soil and remain in the soil for a long period of time. In this research, uptake of metals by food plants including cabbage, carrot, lettuce and tomato grown on soils 10 years after biosolids application was studied. All the five metals were significantly accumulated in the biosolids-amended soils. The accumulation of metal in soil did not result in significant increase in concentrations of Cu, Cr and Ni in the edible plant tissues. However, the Cd and Zn concentrations of the edible tissues of plants harvested from the biosolids receiving soils were significantly enhanced in comparison with those of the unaffected soils. The plant uptake under Greenfield sandy loam soil was generally higher than those under the Domino clayey loam soil. The metal concentration of edible plant tissue exhibited increasing trends with respect to the concentrations of the ambulated metals. The extents of the increases were plant species dependent. The indigenous soil metals were absorbed by the plants in much higher rates than those of the biosolids–receiving soils. It appeared that the plant uptake of the indigenous soil-borne metal and the added biosolids-borne metals are independent of one another and mathematically are additive.  相似文献   

10.
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.  相似文献   

11.
The responses of oribatid communities to heavy metal contamination were studied. Concentration of cadmium, copper and zinc in nine oribatid species along a gradient of heavy metal pollution was measured. Oribatid mites were sampled seasonally during two years in five forests located at different distances from the zinc smelter in the Olkusz District, southern Poland. The most numerous and diverse oribatid communities were found in the forest with moderate concentrations of heavy metals. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. All studied oribatid species appeared to be accumulators of copper with Oppiella nova, Nothrus silvestris and Adoristes ovatus characterized by the highest bioaccumulation factors. Most species poorly accumulate cadmium and zinc. The accumulation of heavy metals in the body of oribatids was not strictly determined by their body size or the trophic level at which they operate.  相似文献   

12.
The restoration of heavy metal contaminated areas requires information on the response of native plant species to these contaminants. The sensitivity of most Mediterranean woody species to heavy metals has not been established, and little is known about phytotoxic thresholds and environmental risks. We have evaluated the response of four plant species commonly used in ecological restoration, Pinus halepensis, Pistacia lentiscus, Juniperus oxycedrus, and Rhamnus alaternus, grown in nutrient solutions containing a range of copper, nickel and zinc concentrations. Seedlings of these species were exposed to 0.048, 1 and 4 microM of Cu; 0, 25 and 50 microM of Ni; and 0.073, 25 and 100 microM of Zn in a hydroponic silica sand culture for 12 weeks. For all four species, the heavy metal concentration increased in plants as the solution concentration increased and was always higher in roots than in shoots. Pinus halepensis and P. lentiscus showed a higher capacity to accumulate metals in roots than J. oxycedrus and R. alaternus, while the allocation to shoots was considerably higher in the latter two. Intermediate heavy-metal doses enhanced biomass accumulation, whereas the highest doses resulted in reductions in biomass. Decreases in shoot biomass occurred at internal concentrations ranging from 25 to 128 microg g-1 of Zn, and 1.7 to 4.1 microg g( -1) of Cu. Nickel phytoxicity could not be established within the range of doses used. Rhamnus alaternus and J. oxycedrus showed higher sensitivity to Cu and Zn than P. halepensis and, especially, P. lentiscus. Contrasted responses to heavy metals must be taken into account when using Mediterranean woody species for the restoration of heavy metal contaminated sites.  相似文献   

13.
The effects of plant-bound zinc (Zn) and cadmium (Cd) on element uptake and their interactions in a parasite-host system were investigated in a model experiment. Male Wistar rats were divided into four groups (C, P, TC and TP). Groups TC and TP were infected with the rat tapeworm Hymenolepis diminuta. Groups C and TC were fed a standard rodent mixture (ST-1) and received 10.5 mg of Zn per week, while groups P and TP were fed a mixture supplemented with the Zn- and Cd-hyperaccumulating plant Arabidopsis halleri at a dosage of 236 mg Zn/week and 3.0 mg Cd/week. Rats were euthanized after 6 weeks, and Cd and Zn levels were determined in rat and tapeworm tissue. The results indicate that tapeworm presence did have an effect on Cd and Zn concentrations in the host tissue; the majority of tissues in infected rats had statistically significant lower Zn and Cd concentrations than did uninfected rats. Tapeworms accumulated more zinc and cadmium than did the majority of host tissues. This important finding confirms the ability of tapeworms to accumulate certain elements (heavy metals) from the host body to their own body tissues. Thus, tapeworms can decrease heavy metal concentrations in host tissues.  相似文献   

14.
To determine the extent of metal accumulation in some aquatic macrophytes from contaminated urban streams in southeast Queensland, plants were sampled from six sites, along with contiguous sediments. In all, 15 different species were collected, the most common genera being Typha (Cattails or Bulrushes) and Persicaria (Knotweeds). Before heavy metal analysis, plants were further separated into various morphological tissues, and five selected samples were separated into various physiological tissues. The cadmium, copper, lead and zinc content of the plants were analysed using flames AAS. In general, plant roots exhibited higher metal concentrations than the contiguous sediments. Of the metals of interest, only for zinc was there a relatively clear pattern of increasing accumulation in aquatic macrophytes with increasing sediment metal concentrations. Comparison between morphological tissues of the sampled plants found that roots consistently presented higher metal concentrations than either the stems or leaves, however unlike previous studies, this investigation revealed no consistent trend of stems accumulating more metals than the leaves. For Typha spp., metal concentrations followed the order of roots > rhizomes > leaves, while for Persicaria spp. the order was roots > leaves > stems. The submerged species Myriophyllum aquaticum accumulated the highest levels of metals overall (e.g. Zn 4300 micrograms g-1 dry weight and Cd 6.5 micrograms g-1), and the emergent macrophytes also exhibited relatively high metal contents in their roots. The leaves of the submerged and floating-leafed species collected contained relatively high quantities of the four metals of interest, compared with the leaves of emergent aquatic macrophytes. In the Typha rhizome and Persicaria stem samples analysed for internal variation in metal content, there was a pattern of increasing metal concentrations towards the external sections of the stem, both for subterranean stems (rhizomes) and above-substrate stems. For Persicaria stems, no clear pattern was observed for cadmium and lead, the two metals investigated that are not required by plants for survival.  相似文献   

15.
In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions.  相似文献   

16.
The accumulation and trophic transfer of the platinum group elements (PGE): Rh, Pd and Pt; have been studied in short-term (5 day) exposures conducted in aquaria containing the marine macroalga, Ulva lactuca, and/or the grazing mollusc, Littorina littorea. Metals added to sea water (to concentrations of 20 μg L−1) were taken up by U. lactuca in the order Rh, Pt > Pd and by L. littorea in the order Pd ≥ Pt ≥ Rh, with greatest metal accumulation in the latter generally occurring in the visceral complex and kidney. When fed contaminated alga, accumulation of Rh and Pd by L. littorea, relative to total available metal, increased by an order of magnitude, while accumulation of Pt was not readily detected. We conclude that the diet is the most important vector for accumulation of Rh and Pd, while accumulation of Pt appears to proceed mainly from the aqueous phase.  相似文献   

17.
Heavy metals in plants and phytoremediation   总被引:2,自引:0,他引:2  
GOAL, SCOPE AND BACKGROUND: In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. METHODS: The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. RESULTS AND DISCUSSION: Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. CONCLUSIONS: Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. RECOMMENDATIONS AND OUTLOOK: Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.  相似文献   

18.
Six monitoring stations were selected to characterize the variations in airborne concentrations of heavy metals in South Korea between 1999 and 2012. Three stations represented higher concentrations, and three represented lower concentrations. The heavy metals monitored at these stations include cadmium, chromium, copper, iron (Fe), lead, manganese (Mn), and nickel. During the study period, concentrations of heavy metals at many stations, including those around the Seoul metropolitan area, showed a decreasing trend. However, concentrations of Mn and Fe that are primarily of crustal origin increased at four of the six stations. Some stations were significantly affected by emissions from the local industrial complex (IC), and heavy metal concentrations at those stations were relatively high even in summer. Many heavy metal concentrations were higher in spring than in winter, but wintertime concentrations of Cr and Pb were higher at the stations representing lower concentrations due to the dominant influence of combustion emissions. At stations less affected by emissions from the IC, concentrations of Fe and Mn that are predominantly crustal in origin were higher in spring, when Asian dust (AD) events are most frequent. Although Mn concentrations were also high at stations within the steelmaking IC during AD periods, they were much higher during non-AD periods due to local emissions. Variations in heavy metal concentrations, which are heavily influenced by emissions from the IC, warrant individual analysis because their emission characteristics differ from those of typical cases.  相似文献   

19.
All aquatic invertebrates take up and accumulate trace metals whether essential or not, and subsequent body concentrations of trace metals show enormous variability across metals and invertebrate taxa. Accumulated metal concentrations are interpreted in terms of different trace metal accumulation patterns, dividing accumulated metals into two components--metabolically available metal and stored detoxified metal. Crustaceans are used as examples of different accumulation patterns that will have a general applicability to all aquatic invertebrates. Toxicity is related to a threshold concentration of metabolically available metal and not to total accumulated metal concentration. The significance of accumulated metal concentrations is discussed in terms of the biological significance, including the attempted recognition of a high or low concentration, and of the applied use of aquatic invertebrates in biomonitoring programmes assessing geographical and temporal variation in trace metal bioavailabilities in aquatic systems.  相似文献   

20.
Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号