首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Humanity faces an increasing possibility that unusual and extreme natural disasters will increase, compounded with climate change, including global warming. These compound events are designated as compounded natural hazards in this study. A methodology must be developed for predicting what events and risks will confront future societies, to propose countermeasures and adaptation strategies against these events, and to evaluate the influences of compound disasters on infrastructure which is particularly situated near coasts and rivers. Based on the above-stated background and demands, this study was undertaken with the intention of upgrading the methodology for estimating effects on infrastructure of compound events such as increased typhoon and rainfall severity caused by global warming occurring concurrently with a great earthquake in Japan. Such a methodology is expected to contribute to progress in the fields of natural disaster mitigation and land preservation, particularly benefiting coastal and river areas in Japan. Additionally in this study, risk and economic loss analyses for the possible occurrence of compound disasters for coastal infrastructure and foundations are produced for establishing environmental strategies at the governmental level. The authors further propose adaptation strategies and techniques as countermeasures against these events.  相似文献   

2.
Small tropical islands are widely recognized as having high exposure and vulnerability to climate change and other natural hazards. Ocean warming and acidification, changing storm patterns and intensity, and accelerated sea-level rise pose challenges that compound the intrinsic vulnerability of small, remote, island communities. Sustainable development requires robust guidance on the risks associated with natural hazards and climate change, including the potential for island coasts and reefs to keep pace with rising sea levels. Here we review these issues with special attention to their implications for climate-change vulnerability, adaptation, and disaster risk reduction in various island settings. We present new projections for 2010–2100 local sea-level rise (SLR) at 18 island sites, incorporating crustal motion and gravitational fingerprinting, for a range of Intergovernmental Panel on Climate Change global projections and a semi-empirical model. Projected 90-year SLR for the upper limit A1FI scenario with enhanced glacier drawdown ranges from 0.56 to 1.01 m for islands with a measured range of vertical motion from ?0.29 to +0.10 m. We classify tropical small islands into four broad groups comprising continental fragments, volcanic islands, near-atolls and atolls, and high carbonate islands including raised atolls. Because exposure to coastal forcing and hazards varies with island form, this provides a framework for consideration of vulnerability and adaptation strategies. Nevertheless, appropriate measures to adjust for climate change and to mitigate disaster risk depend on a place-based understanding of island landscapes and of processes operating in the coastal biophysical system of individual islands.  相似文献   

3.
Sea-level rise (SLR) poses a significant threat to many coastal areas and will likely have important impacts on socio-economic development in those regions. Located on the eastern coast in China, the megacity of Shanghai is particularly vulnerable to SLR and associated storm surge risks. Using the municipality of Shanghai as a case study, the possible impacts of flooding risks caused by SLR and associated storm surges on socio-economic development in the region were analysed by a Source–Pathway–Receptor–Consequence (SPRC) conceptual model. The projections of flooding risk in the study area were simulated by MIKE21 (a two-dimensional hydrodynamic model) for the three time periods of 2030, 2050 and 2100. An index system for vulnerability assessment was devised, in which flooding depth, density of population, GDP per capita, GDP per unit land, loss rate under flooding and fiscal revenue were selected as the key indicators. A quantitative spatial assessment method based on a GIS platform was established by quantifying each indicator, calculating and then grading the vulnerability index. The results showed that in the 2030 projection, 99.3 % of the areas show no vulnerability to SLR and associated storm surges under the present infrastructure. By 2050, the areas with low, moderate and high vulnerabilities change significantly to 5.3, 8.0 and 23.9 %, respectively, while by 2100, the equivalent figures are 12.9, 6.3 and 30.7 %. The application of the SPRC model, the methodology and the results from this study could assist with the objective and quantitative assessment of the socio-economic vulnerability of other similar coastal regions undergoing the impacts of SLR and associated storm surges. Based on the results of this study, mitigation and adaptation measures should be considered, which include the controlling the rate of land subsidence, the reinforcement of coastal defence systems and the introduction of adaptation in long-term urban planning.  相似文献   

4.

Even if climate change mitigation is successful, sea levels will keep rising. With subsidence, relative sea-level rise represents a long-term threat to low-lying deltas. A large part of coastal Bangladesh was analysed using the Delta Dynamic Integrated Emulator Model to determine changes in flood depth, area and population affected given sea-level rise equivalent to global mean temperature rises of 1.5, 2.0 and 3.0 °C with respect to pre-industrial for three ensemble members of a modified A1B scenario. Annual climate variability today (with approximately 1.0 °C of warming) is potentially more important, in terms of coastal impacts, than an additional 0.5 °C warming. In coastal Bangladesh, the average depth of flooding in protected areas is projected to double to between 0.07 and 0.09 m when temperatures are projected at 3.0 °C compared with 1.5 °C. In unprotected areas, the depth of flooding is projected to increase by approximately 50% to 0.21–0.27 m, whilst the average area inundated increases 2.5 times (from 5 to 13% of the region) in the same temperature frame. The greatest area of land flooded is projected in the central and north-east regions. In contrast, lower flood depths, less land area flooded and fewer people are projected in the poldered west of the region. Over multi-centennial timescales, climate change mitigation and controlled sedimentation to maintain relative delta height are key to a delta’s survival. With slow rates of sea-level rise, adaptation remains possible, but further support is required. Monitoring of sea-level rise and subsidence in deltas is recommended, together with improved datasets of elevation.

  相似文献   

5.
The quantitative analysis of hurricane impacts on coastal development in the Caribbean is surprisingly infrequent and many tools to assess physical vulnerability to sea level rise (SLR) are insufficient to evaluate risk in coastal areas exposed to wave attack during extreme events. This paper proposes a practical methodology to quantify coastal hazards and evaluate SLR impact scenarios in coastal areas, providing quantitative input for coastal vulnerability analysis. We illustrate the implementation of the proposed methodology with results from a site-specific analysis. We quantify how storm wave impacts penetrate farther inland and reach higher elevations for increasing SLR conditions. We also show that the increase in elevation of storm wave impacts is more than the nominal increase in mean sea level, and that elevation increase may be on the order of up to twice the nominal SLR. By developing design parameters for multiple scenarios, as opposed to the determination of a single SLR value for design established by consensus, this approach generates information that we argue encourages resilient design and embedding future adaptation in coastal design. We discuss how government planners and regulators, as well as real estate developers, lenders, and investors, can improve coastal planning and resilient design of coastal projects by using this approach.  相似文献   

6.
Coastal regions have long been settled by humans due to their abundant resources for livelihoods, including agriculture, transportation, and rich biodiversity. However, natural and anthropogenic factors, such as climate change and sea-level rise, and land subsidence, population pressure, developmental activities, pose threats to coastal sustainability. Natural hazards, such as fluvial or coastal floods, impact poorer and more vulnerable communities greater than more affluent communities. Quantitative assessments of how natural hazards affect vulnerable communities in deltaic regions are still limited, hampering the design of effective management strategies to increase household and community resilience. Drawing from Driving Forces–Pressure–State–Impact–Response (DPSIR), we quantify the associations between household poverty and the likelihood of material and human loss following a natural hazard using new survey data from 783 households within Indian Sundarban Delta community. The results suggest that the poorest households are significantly more likely to endure material and human losses following a natural hazard and repeated losses of livelihood make them more vulnerable to future risk. The results further suggest that salinization, tidal surge, erosion, and household location are also significant predictors of economic and human losses. Given the current and projected impact of climate change and importance of delta regions as the world’s food baskets, poverty reduction and increase societal resilience should be a primary pathway to strengthen the resilience of the poorest populations inhabiting deltas.  相似文献   

7.
South Asia is one of the most flood vulnerable regions in the world. Floods occur often in the region triggered by heavy monsoon precipitation and can cause enormous damages to lives, property, crops and infrastructure. The frequency of extreme floods is on the rise in Bangladesh, India and Pakistan. Past extreme floods fall within the range of climate variability but frequency, magnitude and extent flooding may increase in South Asia in future due to climate change. Flood risk is sensitive to different levels of warming. For example, in Bangladesh, analysis shows that most of the expected changes in flood depth and extent would occur between 0 and 2°C warming. The three major rivers Ganges, Brahmaputra and Meghna/Barak will play similar roles in future flooding regimes as they are doing presently. Increases in future flooding can cause extensive damage to rice crops in the monsoon. This may have implications for food security especially of poor women and children. Floods can also impact public health in the flood plains and in the coastal areas.  相似文献   

8.
Sea-level rise is a major threat facing the Coral Triangle countries in the twenty-first century. Assessments of vulnerability and adaptation that consider the interactions among natural and social systems are critical to identifying habitats and communities vulnerable to sea-level rise and for supporting the development of adaptation strategies. This paper presents such an assessment using the DIVA model and identifies vulnerable coastal regions and habitats in Coral Triangle countries at national and sub-national levels (administrative provinces). The following four main sea-level rise impacts are assessed in ecological, social and economic terms over the twenty-first century: (1) coastal wetland change, (2) increased coastal flooding, (3) increased coastal erosion, and (4) saltwater intrusion into estuaries and deltas. The results suggest that sea-level rise will significantly affect coastal regions and habitats in the Coral Triangle countries, but the impacts will differ across the region in terms of people flooded annually, coastal wetland change and loss, and damage and adaptation costs. Indonesia is projected to be most affected by coastal flooding, with nearly 5.9 million people expected to experience flooding annually in 2100 assuming no adaptation. However, if adaptation is considered, this number is significantly reduced. By the end of the century, coastal wetland loss is most significant for Indonesia in terms of total area lost, but the Solomon Islands are projected to experience the greatest relative loss of coastal wetlands. Damage costs associated with sea-level rise are highest in the Philippines (US $6.5 billion/year) and lowest in the Solomon Islands (US $70,000/year). Adaptation is estimated to reduce damage costs significantly, in particular for the Philippines, Indonesia, and Malaysia (between 68 and 99%). These results suggest that the impacts of sea-level rise are likely to be widespread in the region and adaptation measures must be broadly applied.  相似文献   

9.
Like many coastal ports around the world, Rhode Island’s Port of Providence in USA is at risk for climate-related natural hazards, such as catastrophic storm surges and significant sea level rise (0.5–2.0 m), over the next century. To combat such events, communities may eventually adopt so-called “transformational adaptation” strategies, like the construction of major new infrastructure, the reorganization of vulnerable systems, or changes in their locations. Such strategies can take decades or more to plan, design, find consensus around, fund, and ultimately implement. Before any meaningful decisions can be made, however, a shared understanding of risks, consequences, and options must be generated and allowed to percolate through the decision-making systems. This paper presents results from a pre-planning exercise that utilized “boundary objects” to engage the Port of Providence's stakeholders in an early dialogue about the transformational approaches to hazard–risk mitigation. The research team piloted the following three boundary objects as a means to initiate meaningful dialogue about long-term storm resilience challenges amongst key stakeholders of this exposed seaport system: (1) a storm scenario with local-scale visualizations, (2) three long-term transformational resilience concepts, and (3) a decision support tool called Wecision. The team tested these boundary objects in a workshop setting with 30 port business owners and policy makers, and found them to be an effective catalyst to generate a robust dialogue around a very challenging topic.  相似文献   

10.
Community-based adaptation (CBA) seeks to address climate risks and socio-economic drivers of vulnerability simultaneously. However, as CBA activities appear very similar to standard development work, difficulties in identifying good practices arise. To clarify the role of CBA, this study elucidated how climate change can impact pre-existing development problems by investigating the experiences of four low-lying island communities in central Philippines. The islands currently suffer from frequent and extreme tidal flooding (following an earthquake-induced land subsidence in 2013, with a magnitude that is broadly similar to sea-level rise projections under a 1.5 to 2 °C global warming scenario), and endured a dry spell in 2016. The study also identified various publicly and privately initiated adaptation strategies, and evaluated their resilience against actual biophysical events. The study conducted focus group discussions with local leaders and in-depth interviews with government officials and residents in March 2016. Results show that tidal flooding impacted almost all aspects of daily life on the islands, while the dry spell completely depleted their limited water supplies. The strategies implemented by governments and NGOs (e.g., seawalls, rainwater collectors) were found to be inadequate in preventing tidal flooding and compensating for the dry spell. Also, communities used coral stones and plastic waste for raising the floors of their homes, which have an erosive effect on their capacity to adapt in the long term. Lack of community participation in publicly initiated projects and lack of adaptation funding for community-based strategies were the greatest obstacles to implementing climate-resilient solutions.  相似文献   

11.
Climate change is a significant global risk that is predicted to be particularly devastating to coastal communities. Climate change adaptation and mitigation have been hindered by many factors, including psychological barriers, ineffective outreach and communication, and knowledge gaps. This qualitative study compares an expert model of climate change risks to county administrators' “mental” models of climate change and related coastal environmental hazards in Crystal River, Florida, USA. There were 24 common nodes in the expert and the combined non-expert models, mainly related to hurricanes, property damage, and economic concerns. Seven nodes mentioned by non-experts fit within, but were not a part of, the expert model, primarily related to ecological concerns about water quality. The findings suggest that effective climate outreach and communication could focus on compatible parts of the models and incorporate local concerns to find less controversial ways to discuss climate-related hazards.  相似文献   

12.
以长三角地区上海、江苏和浙江3省市为研究对象,运用Johansen协整检验、向量误差修正模型(VEC)和Granger因果检验等方法分析能源消费与经济发展的相互关系,并利用LMDI方法对3省市1995~2007年的能源强度进行分解分析,得到能源消费与区域发展关系的影响因素。结果表明:近年来长三角能源消费形势严峻,并较多地受到产业结构调整的影响。上海和江苏的能源消费在一定程度上拉动了经济发展,但是随着产业结构的调整,上海工业结构的调整促进了能源强度降低,而江苏却正好相反。近年来,浙江省的经济发展对能源消费的影响比较显著,随着该省工业规模扩大,能源强度有所升高,但是其产业结构的调整有利于降低能源强度。  相似文献   

13.
Beaches are frequently subjected to erosion and accretion that are influenced by coastal development interventions and natural variations due to storms and changes in river flow. Climate change may also exacerbate beach erosion and accretion. Natural scientists are concerned with the sustainability of species dependent on the beach ecosystem. Policymakers are pre-occupied with the economic sustainability of coastal communities should species decline and prolonged beach loss occur. The aim of this paper is to explore the linkage between science and policy by reporting the findings of a study of coastal change impacts on leatherback turtle nesting and analysing the socio-economic and adaptation implications of these changes for coastal communities. Grande Riviere, Trinidad, was used as a case study. Primary fieldwork investigated unsustainable coastal management practices. A questionnaire was administered to examine livelihoods, including ecotourism based on leatherback turtle nesting, and knowledge and awareness of climate change. One key finding of the study was that the community’s livelihoods were natural resources dependent, and that natural beach dynamics and unsustainable coastal management practices posed major threats to natural resource and economic sustainability. Another key finding was that, despite these impacts, community knowledge and awareness of climate change in general was low, and there was a perception of state responsibility for climate change adaptation. The research findings have global applicability for coastal communities at risk of exposure and that are highly vulnerable to natural resources damage arising from anthropogenic stress and potential climate change. These communities require policy reforms to strengthen current coastal management practices and adaptation responses aimed at ensuring long-term sustainability.  相似文献   

14.
Coastal protection strategies increasingly have to take into account the effects of climate change. At present, engineering and natural science models that assess the impact of global climatic transformations on regional coastal zones and their protection structures remain rather detached from the knowledge and insights of regional practitioners. The main thesis of this contribution, using a case study from the North Sea Coast of Germany, is that innovative coastal protection requires not only interdisciplinary research but transdisciplinary collaboration in order to develop a viable adaptation strategy. The investigation of the social dimension of climate change and coastal protection strategies, using qualitative interviews with organized regional stakeholders, climate researchers and coastal engineers, as well as a representative public survey, contributes to a comprehensive understanding of regional perceptions with respect to climate change and coastal protection.  相似文献   

15.
Salt marshes persist within the intertidal zone when marsh elevation gains are commensurate with rates of sea-level rise (SLR). Monitoring changes in marsh elevation in concert with tidal water levels is therefore an effective way to determine if salt marshes are keeping pace with SLR over time. Surface elevation tables (SETs) are a common method for collecting precise data on marsh elevation change. Southern New England is a hot spot for SLR, but few SET elevation change datasets are available for the region. Our study synthesizes elevation change data collected from 1999 to 2015 from a network of SET stations throughout Rhode Island (RI). These data are compared to accretion and water level data from the same time period to estimate shallow subsidence and determine whether marshes are tracking SLR. Salt marsh elevation increased at a mean overall rate of 1.40 mm year?1 and ranged from ?0.33 to 3.36 mm year?1 at individual stations. Shallow subsidence dampened elevation gain in mid-Narragansett Bay marshes, but in other areas of coastal RI, subsurface processes may augment surface accretion. In all cases, marsh elevation gain was exceeded by the 5.26 mm year?1 rate of increase in sea levels during the study period. Our study provides the first SET elevation change data from RI and shows that most RI marshes are not keeping pace with short- or long-term rates of SLR. It also lends support to previous research that implicates SLR as a primary driver of recent changes to southern New England salt marshes.  相似文献   

16.
Deltas at risk   总被引:3,自引:0,他引:3  
The long-term sustainability of populated deltas is often more affected by large-scale engineering projects than sea-level rise associated with global warming and the global ocean volume increase. On deltas, the rate of relative eustatic sea-level rise is often smaller than the rate for isostatic-controlled subsidence and of the same order of magnitude as natural sediment compaction. Accelerated compaction associated with petroleum and groundwater mining can exceed natural subsidence rates by an order of magnitude. The reduction in sediment delivery to deltas due to trapping behind dams, along with the human control of routing river discharge across delta plains, contributes to the sinking of world deltas. Consequences include shoreline erosion, threatened mangroves swamps and wetlands, increased salinization of cultivated land, and hundreds of millions of humans put at risk.  相似文献   

17.
Additional freshwater sources are required in many parts of the world, including the coastal areas of the Red River Delta (RRD), where the groundwater (GW) is generally brackish. Determining a feasible method for desalinating brackish aquifers would help provide additional freshwater sources. However, substantial desalination of brackish aquifers cannot be achieved under the natural conditions of GW flow and precipitation recharge. Although rainfall recharge to the shallow Holocene aquifer has occurred for hundreds of years, the aquifer still remains brackish since the natural hydraulic conditions do not allow a complete mixing between the fresh recharged water and aquifer salinized water or the discharging of the aquifer salinized water. The planned salt intrusion prevention gates in the Red River, Tra Ly River and Hoa River in the RRD coastal area, combined with increased GW abstraction and associated aquifer recharge with fresh river water, could result in the gradual desalination of the shallow Holocene aquifer. These effects would help improve the area’s resilience to freshwater shortages and sea level rises and would allow for the creation of a long-term sustainable water resource development plan to manage the salinization of water resources caused by sea level rises. Finite element (FE) modeling of GW flow, solute transport via GW flow and dynamic programming (DP) have been used to study the potential desalination of brackish aquifers, the magnitude of GW abstraction quantities and the spatial and temporal aspects of desalination. FE modeling of GW flow coupled with DP was utilized to identify the magnitude of sustainable abstraction quantities and the GW flow field, which is required in salt transport models. Multiple sizes of elements and time steps were used to adapt to the unsteady state of GW flow and hydraulic head variables between the elements in the FE meshes in order to ensure reasonable accuracy of numerical modeling. The GW flow and salt transport modeling and DP allowed determining quasi-steady-state GW abstraction rates and aquifer salinity levels for conditions that did and did not include the shallow Holocene unconfined aquifer recharge from rainfall. The aquifer modeled domain which is supposed to serve the pumping well field is 1.5 km2. The results showed that the Holocene aquifer may provide a stable abstraction rate of 100 m3/day starting in the 6th year (for the worst-case scenario with zero aquifer recharge from rainfall) to 130 m3/day starting in the 3rd year (for the scenario with aquifer recharge equal to 3% of the rainfall levels). During the first years of GW abstraction, the desalination of the brackish upper Holocene aquifer will mainly occur in the area close to the river, and at the 18th year of abstraction, almost the entire area between the river and line of pumping wells would be desalinized. From the 10th year of abstraction, the abstracted water has a total dissolved solids content lower than 0.5 g/l for the worst-case scenario with zero aquifer recharge from rainfall and lower than 0.42 g/l for the scenario with aquifer recharge equal to 3% of the rainfall. The modeling results indicate the simulated process by which abstraction of groundwater adjacent to the Tra Ly River could desalinize the brackish aquifer via freshwater recharge from the river.  相似文献   

18.
This paper assesses sea-level rise impacts on Africa at continental and national scales including the benefits of mitigation and of applying adaptation measures, considering four scenarios of global mean sea-level rises from 64 to 126 cm in the period of 1995–2100. We find that in 2100, 16–27 million people are expected to be flooded per year, and annual damage costs range between US5 and US 5 and US 9 billion, if no adaptation takes place. Mitigation reduces impacts by 11–36%. Adaptation in the form of building dikes to protect against coastal flooding and nourishing beaches to protect against coastal erosion reduces the number of people flooded by two orders of magnitude and cuts damage costs in half by 2100. Following such a protection strategy would require substantial investment. First, Africa’s current adaptation deficit with respect to coastal flooding would need to be addressed. DIVA suggests that a capital investment of US300 billion is required to build dikes adapted to the current surge regime and US 300 billion is required to build dikes adapted to the current surge regime and US 3 billion per year for maintenance. In addition, between US2 and US 2 and US 6 billion per year needs to be spent on protecting against future sea-level rise and socio-economic development by 2100. This suggests that protection is not effective from a monetary perspective but may still be desirable when also taking into account the avoided social impact. We conclude that this issue requires further investigation including sub-national scale studies that look at impacts and adaptation in conjunction with the development agenda and consider a wider range of adaptation options and strategies.  相似文献   

19.
Global warming of 1.5 °C above preindustrial levels and a commensurate increase in global greenhouse gas emissions pose an unprecedented danger to human settlements, livelihoods and the sustainable development of Small Island Developing States (SIDS), yet these challenges present tremendous opportunities to rethink development pathways. The paper has two objectives. One is to critically review present vulnerabilities and adaptation strategies employed by the state, private sector, non-governmental organisations, community-based organisations and households. The other is to discuss vulnerabilities and identify adaptation and resiliency strategies which are considered most applicable beyond the 1.5 °C limit. The Caribbean Region is the focus of the paper. A key finding of the paper is that temperature change above the 1.5 °C limit set by the Paris Conference of the Parties will make the natural and human systems of SIDS even more highly vulnerable than they are already. Another finding is that Caribbean states have implemented various innovative climate change adaptation strategies, but their relevance should the 1.5 °C target be exceeded, requires further exploration. The paper is useful to policymakers, decision-makers and finance agencies in search of practical solutions to avert the implications for Caribbean settlements, economies and ecosystems should the temperature warming exceed 1.5 °C.  相似文献   

20.
The Central Vietnamese coast faces increasing impacts on the local livelihoods of coastal communities as a result of the increasing natural hazards which include tropical storms, heavy rains, and floods. A challenge for the local populations is improving their adaptation capacity to climate change hazards in a sustainable way. This study deals with the impacts of climate change-associated hazards and adaptation capacity in coastal communes of the Ky Anh district, Ha Tinh province along the coast in Central Vietnam. A combination of the Stakeholder Delphi technique and the DPSIR (drivers–pressures–states–impacts–responses) framework was used. Delphi questionnaires allowed assessing the consensus among the respondents of a stakeholder group. Twenty questions and 20 statements were listed reflecting the DPSIR components. Thirty-six panel members, which were randomly selected from four stakeholder groups which included local authorities, farmers, fishermen, and fish traders, were involved in a two-round Delphi process. The results show that, both agricultural and non-agricultural sectors are main drivers (D); migration, calamities, population growth, mineral mining, aquaculture processing, and agriculture are main pressures (P); changes in the frequency of extreme weather events, increasing intensity of storms, floods, and droughts indicate main states (S); changes in agricultural land use and productivity are main impacts (I); construction of and upgrading dykes and irrigation systems should be the principal responses (R) in the vision of the local stakeholders. The Kendall’s W value for the second round is 0.681, indicating a high degree of consensus among the panel members and confidence in the ranks. Overall, the study advocates developing sustainable ecosystems, an upgraded New Rural Planning, and renewable energy strategies as the main local adaptations to climate change hazards in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号