首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 463 毫秒
1.
长三角淳安地区二次颗粒物污染形成机制   总被引:7,自引:4,他引:3  
二次组分是长三角区域PM_(2.5)颗粒物的主要组成部分,研究二次细颗粒物污染特征以及形成机制对污染控制至关重要.本文揭示了长三角背景地区颗粒物的有机与无机组分的构成,实现了对二次有机气溶胶(SOA)总量的核算;并进一步结合气溶胶热力学模型,模拟颗粒物的理化性质,深入探讨颗粒相的水含量与酸碱度对二次污染物形成的影响.结果表明,长三角背景区域细颗粒的年平均浓度为33μg·m~(-3),主要成分为硫酸盐、硝酸盐、铵盐和有机物,其平均贡献分别为19%、15%、12%和19%.颗粒相中的硝酸盐主要为局地生成,其质量浓度主要受到温度与颗粒相铵盐浓度的影响;硫酸盐的生成受到区域传输与局地生成的耦合作用的影响.气溶胶热力学模型模拟的结果显示,长三角背景地区颗粒物总体呈现强酸性,其酸度受季节影响不大,但显著受到了颗粒相水含量的影响;颗粒相水含量对春季SOA生成的促进作用较夏季更为显著;夏季SOA在PM_(2.5)中质量浓度占比高达40%,其形成主要受到大气氧化性的影响.  相似文献   

2.
浙江金华秋季干气溶胶中主要化学组分的消光贡献解析   总被引:1,自引:0,他引:1  
造成雾霾事件的主要原因是高浓度的大气细颗粒物污染.为了深入研究大气细颗粒物的消光来源,本研究采用高时间分辨率气溶胶观测仪器获得了浙江金华秋季PM1主要化学组分浓度及干气溶胶吸收系数和散射系数演变情况.结合有机气溶胶正矩阵因子解析模型(PMF)和多元线性回归方法,建立了拟合优度很高(R2=0.977)的细颗粒物中主要化学组分与干气溶胶消光系数间的定量关系模型.结果表明,观测期间消光贡献最大的是硫酸铵,贡献率为35.1%;其次是硝酸铵,贡献率为26.7%;二次有机气溶胶(SOA)、生物质燃烧有机气溶胶(BBOA)、黑碳(BC)及氯化铵的消光贡献率分别为14.3%、11.2%、8.7%、4.0%.在一些特定污染时段,BBOA具有最大的消光贡献,是导致此时大气能见度大幅度衰减的首要因子.  相似文献   

3.
2013年1月北京市PM2.5区域来源解析   总被引:9,自引:11,他引:9  
李璇  聂滕  齐珺  周震  孙雪松 《环境科学》2015,36(4):1148-1153
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献.  相似文献   

4.
张逸琴  王杰  高健  徐仲均  车飞  马彤  杨艳  刘素  闫璐璐 《环境科学》2019,40(12):5202-5212
为掌握华北平原东部地区大气细颗粒物(PM_(2.5))的污染特征与来源,本研究对2016年和2017年这2年采暖期衡水市、沧州市、济南市、德州市、滨州市、淄博市和聊城市的大气细颗粒物、组分特征和来源进行对比分析.结果表明,2016年和2017年采暖期该区域ρ(PM_(2.5))日均值分别为137. 23μg·m-3和111. 83μg·m-3,分别超过《环境空气质量标准》(GB 3095-2012)日均二级标准限值1. 8倍和1. 5倍;水溶性离子质量浓度分别占ρ(PM_(2.5))的53. 32%和47. 04%,二次无机离子(SNA)为主要离子组分; NO_3-/SO_24-比值从1. 35上升至1. 60,同时Cl-浓度下降,表明燃煤源贡献降低;二次有机碳(SOC)在有机碳(OC)中的占比分别为71. 63%和55. 35%,说明该区域二次有机碳占比明显降低;特征元素Fe/Al、Ba/Ni对比分析表明,2017年采暖期机动车源和扬尘源贡献同比上升;后向轨迹结果表明,该区域污染气团主要源于西北方向,但来源于江苏、安徽等地的污染气团携带的颗粒物浓度最高.  相似文献   

5.
深圳大运会前后大气含碳气溶胶污染特征   总被引:1,自引:0,他引:1  
2011年8月12~24日,深圳市成功举办了第26届世界大学生运动会.为保证空气质量,两个观测点的PM2.5(空气动力学直径?2.5μm的大气颗粒物)质量浓度均值分别为(12.99±3.73)μg/m3和(25.24±5.20)μg/m3.然而,8月24日(含)大运会结束、主要污染控制措施取消之后,PM2.5的质量浓度呈现台阶式突增,测得观测点所处位置PM2.5分别为(48.01±8.73)μg/m3和(54.05±6.53)μg/m3.为探讨大气颗粒物污染水平变化的原因,对大运会结束前后深圳市大气含碳气溶胶的变化特征进行了分析,利用元素碳示踪法对大运会结束前后的一次和二次含碳气溶胶污染水平进行估算,结果显示大运会结束后的2个观测点的一次有机碳估算浓度较大运会期间增长了55%和22%,二次有机碳分别增长了442%和169%.结合气象因素及后向轨迹聚类模型的分析结果,认为在大运会结束后的大气颗粒物浓度阶梯状增加的原因除本地污染累积外,污染气团远距离传输以及气象条件都对阶梯型污染有一定的贡献.  相似文献   

6.
基于CAMx的徐州市2016年冬季PM2.5污染过程及来源分析   总被引:1,自引:0,他引:1  
徐州地处江苏西北部、华北平原的东南部,为内陆资源型工业城市,近几年来环境监测数据显示,徐州地区大气复合污染问题日益突出,准确模拟大气污染物状况及来源对于空气污染的防治十分关键.2016年1月,徐州市出现了多次持续的重污染天气,研究中以此次污染事件为例,首先基于WRF-CAMx空气质量模型系统对这次细颗粒物污染过程进行全面的模拟与分析,其次利用CAMx-PSAT系统模拟和分析本次污染的区域传输过程.研究结果显示:此次细颗粒物污染中,PM2.5组成成分以硫酸盐、元素碳、硝酸盐和铵盐为主,分别占月平均浓度的29%、15%、14%、14%;PM2.5的区域传输贡献中,长距离传输所占比重最大,月平均贡献率达46%,其次为本地源排放,平均贡献率为39%;重污染天气期间,PM2.5污染主要从西北方向输入,此时长距离传输的影响明显增大.  相似文献   

7.
大气传输路径对上甸子本底站气溶胶光学特性的影响   总被引:1,自引:1,他引:0  
利用2005~2010年北京上甸子本底站的PM2.5浓度、气溶胶散射系数(σsp)的连续观测资料,结合后向轨迹分析方法,探讨了不同季节、不同气团传输路径对本底地区气溶胶光学特性的影响.结果表明,污染物水平不仅与气团来向有关,也与气团的运动状态有关.偏南气团路径下的PM2.5浓度和σsp整体高于偏北气团路径,同时运动速度较慢、高度较低的气团路径多对应较高的PM2.5浓度和σsp.春、夏、秋季来自华北平原地区以及冬季来自华北区域北部的慢速、低气团对上甸子的污染水平有重要贡献.沙尘气溶胶多出现在春季,平均气溶胶质量散射效率(αsp)为0.78 m2·g-1.四季平均人为污染气溶胶的αsp为4.00 m2·g-1,其中冬季最高,春季最低.对于人为污染气溶胶来说,春、夏、秋三季的西北偏西路径、偏南路径以及偏北路径中速度较慢的轨迹组均具有较高的αsp(4.0 m2·g-1),表明这些气团路径受人为排放活动影响较大,而冬季各路径的αsp均较高,说明冬季区域内人为排放的影响比较一致.春、夏、秋三季中其他偏北的气团路径主要受到人为污染与沙尘气溶胶的共同影响.  相似文献   

8.
李莉  安静宇  严茹莎 《环境科学》2015,36(10):3543-3553
近年来高浓度细颗粒物引起的大气灰霾污染已成为制约我国城市和区域可持续发展的重大环境问题之一,科学快速地诊断PM2.5及其关键组分的来源对于缓解当前严峻的污染形势具有极为重要的科学意义和现实意义.2013年12月上旬,我国东部特大型城市上海及其所处的长三角区域出现了历史上罕见的严重污染过程,PM2.5小时浓度一度高达640μg·m-3.本文以分析12月上旬上海市所出现的三次典型重污染过程为案例,利用颗粒物来源追踪技术,对严重污染期间上海市PM2.5及其关键化学组分(硫酸盐、硝酸盐、铵盐、有机碳和元素碳)开展了来源解析研究.结果表明,在上海市人为排放源中,工业锅炉和窑炉、移动源和电站锅炉是对细颗粒物中硝酸盐贡献最大的3类排放源;工业源和移动源是对硫酸盐贡献最大的两类排放源.在灰霾、湿霾和过境这3次污染过程中,上海本地排放对PM2.5的浓度贡献分别是35.3%、44.8%和22.7%;长距离输送分别达到了42.0%、41.1%和59.8%.在长三角模拟区域内,扬尘、工业过程、挥发类源、工业锅炉和窑炉及移动源是最主要的细颗粒贡献源,平均贡献占比分别是25.1%、14.9%、15.8%、13.7%和15.9%.研究表明,2013年12月这类极高的严重污染过程,并非单一城市所致,区域联防联控,特别是重度污染期间的联合减排对于缓解细颗粒物重度污染极为重要.  相似文献   

9.
2013年12月初长江三角洲及周边地区重霾污染的数值模拟   总被引:6,自引:0,他引:6  
运用WRF-CMAQ模型模拟了2013年12月1~9日长江三角洲及周边地区的一次重霾污染过程.初步探究灰霾天气下大气细颗粒物(PM2.5)的时空分布特征和区域输送过程,并定量研究了外部源区域输送和本地源对长江三角洲地区PM2.5的贡献.结果表明:模式能够合理再现灰霾天气下长江三角洲及周边地区PM2.5的时空分布特征和演变规律.静稳天气下大气细颗粒物仍然存在着显著的区域输送.污染期间来自安徽、山东南部、苏北地区的跨界输送对长江三角洲区域PM2.5的贡献率分别为3.5%~24.9%、0.14%~30.0%、0.03%~17.5%.整个污染期间本地贡献占49%左右,本地贡献和外地贡献基本相当.  相似文献   

10.
本研究采用WRF-CAMx模型对京津冀及周边7省市PM_(2.5)与SIA组分传输规律进行了研究,定量估算了京津冀地区PM_(2.5)与SIA的空间来源贡献,并得到了各省市之间的传输矩阵.结果表明,PM_(2.5)与SIA组分跨区域传输作用较为显著.京津冀区域PM_(2.5)与SIA组分外来源年均贡献分别为23.4%和45.5%.京津冀及周边各省市年均PM_(2.5)与SIA组分受本地排放影响分别为51.2%~68.8%与36.7%~56.4%.结合后向轨迹模型对北京市2013年1月4次重污染过程的空间来源进行了分析,发现各过程污染气团来向有明显差异,分别由西北方向长距离传输、南部短距离传输以及西南、东南方向局地气团输入.4次重污染过程PM_(2.5)区域传输作用显著,北京PM_(2.5)及SIA本地源贡献分别为35.1%~37.3%与17.1%~28.4%;其中偏南方向气团输入时,北京污染程度更高,且受京津冀排放源贡献较大,PM_(2.5)和SIA贡献率最高可达82.3%和76.4%.  相似文献   

11.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2  
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

12.
以大气污染物协同控制与精准治理的需求为导向,开展湖北省荆州市大气污染物的来源分析.基于FLEXPART-WRF模式揭示了2008—2017年荆州市PM2.5周边源"影响域"的季节气候特征,估算了大气污染物区域传输和局地排放的相对贡献,确定出不同季节的大气污染物主要传输通道.结果表明,荆州地区PM2.5主要"影响域"为湖北、湖南、河南和安徽省.不同季节湖北省外源传输对荆州PM2.5"影响域"的贡献率分别为春季50.4%、夏季33.9%、秋季42.6%、冬季43.0%和年均45.1%.春季3条区域传输通道分别为北通道(沿南阳盆地-荆州)、东通道(沿长江航道-荆州)以及南通道(沿雪峰山-荆州);夏季主要为南通道;秋、冬季分别为北通道、东北通道(沿大别山低山丘陵-荆州)及东通道.针对荆州主要3类重污染天气型的典型个例"影响域"分析表明,高压静稳型PM2.5污染主要来源于本地排放,省内贡献率达87.8%;低压倒槽型PM2.5污染主要来源于偏南输送和本地累积,省内贡献率达55.0%;冷锋输送型PM2.5污染主要来源于北路区域传输,省外贡献率达77.2%.对于冬季重污染期间,建议重点围绕荆州本地与省内荆门、襄阳、孝感、天门、潜江、武汉、随州、宜昌及省外常德、南阳、信阳等地开展协作,加强区域间大气污染联防联控.该项研究可为区域大气污染精细化管控与靶向治理提供科学依据.  相似文献   

13.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

14.
潘勇  郑捷  肖航 《环境科学》2023,44(2):634-645
利用WRF模式和嵌套网格空气质量模式(NAQPMS)对长三角地区2015年1月一次典型PM2.5区域重污染事件进行数值模拟.结果表明,NAQPMS模拟再现了长三角地区PM2.5重污染的发展过程,外来区域污染输送是导致长三角地区发生重污染的一个重要因素,主要受3条通道传输影响:内陆(河南-安徽-江苏)通道、沿海(京津冀-山东-江苏)通道和海洋(京津冀-山东-黄海-江苏)通道.以宁波为对象评估污染跨区域输送贡献的解析结果表明:污染发生阶段以沿海通道输送为主,外来区域输送江苏贡献率较大(36.51%);重污染阶段以内陆通道和海洋通道为主,主要外来区域贡献为浙江北(25.55%)、安徽(12.33%)和海洋(16.92%);污染消散主要受海洋通道影响,外来输送主要为江苏(14.74%)和海洋(31.43%).  相似文献   

15.
对西双版纳州生态环境局勐腊分局2017年8月-2020年8月逐日空气质量数据的分析表明,2-4月是勐腊县空气质量指数(Air Quality Index,AQI)频繁达到二级及以上的时段,空气质量分指数(Individual Air Quality Index,IAQI)能够达到二级及以上标准的污染物为PM2.5、PM10、O3、SO2中的一种或几种,PM2.5、PM10污染较为严重,PM2.5对空气质量的影响最大,可使空气质量达到重度污染,混合污染出现比例远大于单一污染.2019、2020年3-4月勐腊县轻度及以上连续污染日数超过5 d的5次过程中,4次污染过程的主要潜在源区在勐腊上风方向老挝西北部及泰国与其相邻的区域,权重潜在源贡献因子(Weight Potential Source Contribution Function,WPSCF)大于0.6的区域与同年3、4月泰国西北部、老挝西北部的火点密集区有较好的对应关系,4次污染过程与老挝西北部及泰国与其相邻区域的生物质燃烧关系密切;1次污染过程的主要潜在源区主要在当地,当地建筑施工、交通运输、生物质燃烧和餐饮行业细颗粒物的排放会导致勐腊县空气质量出现明显下降.为验证勐腊县连续污染过程受到了周边国家烧荒的影响,利用逐日气溶胶光学厚度(Aerosol Optical Thickness,AOT)对2020年3月23-4月9日的污染过程进行了个例分析,发现AOT大值区位于勐腊上风方向,高浓度污染物持续稳定地向勐腊传输导致勐腊出现持续重污染.  相似文献   

16.
中山市旱季霾特征及数值模拟分析   总被引:1,自引:1,他引:0  
利用观测数据、Hysplit后向轨迹模式以及WRF-CMAQ模式对中山市旱季霾特征进行模拟分析.中山市霾污染的天气形势以大陆高压型为主.当相对湿度在71%~90%时,气溶胶浓度和能见度的负相关性最显著,且当能见度减小到5 km以下时,PM_(2.5)浓度的大幅减小才能使能见度略有好转.最有可能引起中山发生霾天气的两条污染带,一条是沿中山至湖南南部,另一条是沿中山到粤东地区.WRF-CMAQ模式能较好地模拟出2014年1月份中山PM_(2.5)浓度、能见度的变化趋势以及广东省区域内灰霾的污染过程.在气溶胶质量权重及消光贡献中,硫酸盐的比重最高,在高相对湿度下,二次气溶胶的消光权重超过80%.通过中山PM_(2.5)过程分析发现,在霾过程,无冷空气时PM_(2.5)主要来自气溶胶反应、排放源和水平平流,贡献率分别为35%、15%和10%,有冷空气时水平平流的贡献最大,达37%;在清洁过程,无冷空气时气溶胶主要靠水平平流和干沉降清除,贡献率分别为-39%和-14%,有冷空气时清除以水平平流和垂直对流、扩散为主,贡献率分别为-29%和-25%,说明不同天气条件下霾的污染和清洁机制有着明显差别.  相似文献   

17.
贾佳  丛怡  高清敏  王玲玲  杨静静  张国辉 《环境科学》2020,41(12):5256-5266
为揭示郑州市冬季空气污染过程及形成原因,选取郑纺机国控站点为采样点,探讨2019年12月郑州大气污染物浓度和主要气象参数特征,对比不同污染阶段PM2.5水溶性离子、元素和碳质组分浓度变化,并利用空气质量模型模拟结果,分析采样期间污染源排放与区域传输对采样点PM2.5质量浓度的贡献.结果表明,采样期间第一次和第二次重污染形成和消散过程略有差异,分别呈现出"缓慢累积、缓慢清除"和"缓慢积累、快速清除"的特征.第一次和第二次重污染时段NO3-、SO42-和NH4+质量浓度占PM2.5比值达到41.5%和46.2%,OC/EC比值分别为4.0和4.5,二次气溶胶颗粒的大量生成是两次重污染形成的主要原因.采样期间本地、东部、南部、西部和北部区域对采样点PM2.5浓度贡献占比均值分别为58.0%、2.4%、6.7%、6.9%和12.7%,第一次重污染是本地污染物排放和外来源区域传输...  相似文献   

18.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65. 4%),主要来源为燃煤(24. 4%)和工业工艺源(23. 7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州...  相似文献   

19.
为研究我国中部地区不同类型城市夏季大气细颗粒物PM2.5中元素组成特征及来源,于2017年6月对平顶山、随州和武汉这3个站点空气中的PM2.5进行观测,采用电感耦合等离子体质谱仪(ICP-MS)对样品中Ti、Zn、Cu、Cr、As、Pb、Fe、Ni、Se、V、Sb、Cd和Co等13种元素进行分析,并结合富集因子法、主成分-多元线性回归分析方法(PCA-MLR)和后向气团轨迹聚类分析模型对3个站点的污染类型及污染来源进行分析.结果表明,平顶山、随州和武汉三地PM2.5的痕量元素中均以Zn元素浓度最高,As元素的浓度均超过环境空气质量标准(GB 3096-2012)年均浓度限值,3个站点的Pb和Cd浓度均较低.富集因子分析结果表明:Se、Sb、Cd、As、Cu和Zn元素富集因子系数均超过10,受人为污染严重,其中3个站点Se元素的富集因子系数均高于600. PCA-MLR和后向气团轨迹聚类分析结果表明:平顶山站点主要受工业污染/燃油(57. 90%)、交通污染源(24. 40%)、燃煤源(6. 10%)和矿区土壤源(11. ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号