首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
考察了2种活性炭(活性炭A和活性碳B)对垃圾焚烧厂烟气中二恶英去除率的影响。通过采集与分析垃圾焚烧厂"活性炭喷射+布袋除尘"协同处置工艺前口和后口的烟气样品,得到前后口2,3,7,8-PCDD/Fs的浓度,并计算去除率。结果表明:2种活性炭对2,3,7,8-PCDFs的去除率相当,均为99%左右;而对2,3,7,8-PCDDs的去除率略低,分布在83.3%~99.9%之间,并且活性炭A的去除率高于活性炭B。通过对2种活性炭性能指标测试结果的比较,具备更丰富的中孔以及更大的微孔、中孔平均孔径可能是活性炭A去除率更高的原因。此外,比较了活性炭在不同投加速率(5、10和15 kg·h~(-1))下对二恶英的去除率,发现低投加速率时二恶英去除率随投加速率的增加而增加,而当投加速率从10 kg·h~(-1)增加到15 kg·h~(-1)时二恶英去除率无明显变化。  相似文献   

2.
Fenton氧化-活性炭吸附协同深度处理垃圾渗滤液的研究   总被引:2,自引:0,他引:2  
以上海某垃圾填埋场垃圾渗滤液为研究对象,采用Fenton氧化-活性炭吸附协同处理工艺对其处理效果进行研究。探讨了投加方式以及H2O2浓度、Fe2+浓度、活性炭投加量、温度、pH等因素对COD去除率的影响。结果表明:采用先投加活性炭吸附30 min后投加Fenton试剂反应150 min的方式能够获得最好的COD去除效果。正交实验表明各因素对COD去除的主次关系为:活性炭投加量Fe2+浓度反应温度H2O2浓度pH值;其最优化条件为:活性炭投加量为16g/L,Fe2+浓度为29 mmol/L,反应温度为60℃,H2O2浓度为78 mmol/L,pH值为3。  相似文献   

3.
用静态吸附法考察粉末活性炭对水中三烯丙基异氰脲酸酯(CAIC)的吸附行为,采用单因素分析法对活性炭吸附化工废水中TAIC的工艺条件进行研究。实验结果表明,在TAIC模拟废水中,其TAIC初始浓度为800 mg/L,pH为7,在温度为298 K、转速为150 r/min的条件下,当活性炭的投加量达到4.4 g/L,吸附反应时间为50 min时,TAIC的去除效率最高为96.17%;对于实际废水,其TAIC初始浓度为1 500 mg/L,溶液pH为3,在温度为298 K、转速为150 r/min的条件下,当活性炭投加量达到10 g/L,吸附反应时间为2 h时,TAIC的去除效率最高为46.8%。这也是由于实际废水组分复杂,其他有机物存在一定的吸附竞争机制。  相似文献   

4.
用静态吸附法考察粉末活性炭对水中三烯丙基异氰脲酸酯(CAIC)的吸附行为,采用单因素分析法对活性炭吸附化工废水中TAIC的工艺条件进行研究。实验结果表明,在TAIC模拟废水中,其TAIC初始浓度为800 mg/L,pH为7,在温度为298 K、转速为150 r/min的条件下,当活性炭的投加量达到4.4 g/L,吸附反应时间为50 min时,TAIC的去除效率最高为96.17%;对于实际废水,其TAIC初始浓度为1 500 mg/L,溶液pH为3,在温度为298 K、转速为150 r/min的条件下,当活性炭投加量达到10 g/L,吸附反应时间为2 h时,TAIC的去除效率最高为46.8%。这也是由于实际废水组分复杂,其他有机物存在一定的吸附竞争机制。  相似文献   

5.
很多消毒副产物(DBPs)对人类健康具有危害,采用大孔树脂固定床工艺和活性炭批处理联合处理方法,研究了对原水低浓度水溶性有机质(DOM)的去除效果,以期降低饮用水中的DBPs浓度。结果表明:单独采用4种大孔树脂处理原水,DAX-8和ADX-4对于水中总有机碳(TOC)去除率较高,最佳流速条件下,DAX-8、ADX-4对TOC去除率分别为23.67%、22.36%;单独采用6种活性炭处理原水,原水中TOC去除率随着活性炭投加量的增加而增加,当投加量为320 mg/L时,6种活性炭(GAC1、GAC2、GAC3、GAC4、GAC5、GAC6)对TOC的去除率分别为53.67%、63.24%、63.35%、61.24%、65.63%、56.80%;其中GAC5的TOC去除率更佳。DAX-8+GAC5联合处理与ADX-4+GAC5联合处理原水的TOC总去除率更佳,前者略低于后者,最大总去除率分别达到78.34%、82.65%;但DAX-8+GAC5联合处理的比紫外吸收值却低于ADX-4+GAC5联合处理,表明DAX-8对原水DOM中疏水性有机质的去除能力更强;DAX-8、ADX-4、GAC5经过3次再生,对于原水TOC的去除效率依然可以达到初次使用效率的80%以上,表明两种大孔树脂和GAC5一定程度上可以重复利用。  相似文献   

6.
生物质活性炭的制备及其染料废水中的应用   总被引:8,自引:0,他引:8  
以城市污水厂活性污泥为原料,用3 mol/L ZnCl2溶液活化,通入水蒸气作活化气制备活性炭吸附剂.实验结果表明,温度为600℃条件下,活化时间为1 h,制得的活性炭其碘吸附值为374.10 mg/g,比表面积为381.62 m2/g,孔容积为0.25 cm3/g,微孔容积为0.11cm3/g.并进一步将生物质活性炭应用于染料废水的处理,考察了吸附时间、活性炭投加量和pH对色度及TOC的脱除效果的影响.室温下,酸性大红GR染料废水初始浓度为300 mg/L,污泥活性炭的最佳投加量为2%(质量分数),吸附15min,废水色度脱除率可达99.6%,TOC去除率可达99.7%,利用等温吸附实验作吸附等温线,吸附等温线可以用Freundlich或Langmuir方程描述.  相似文献   

7.
Fenton法制备污泥基活性炭及其性能表征   总被引:1,自引:0,他引:1  
污泥基活性炭孔隙率低下是污泥资源化利用的主要制约因素,而Fenton法预处理污泥,可有效改善活性炭性质。通过考察H2O2投加量、H2O2/Fe2+、活化pH以及炭化条件等参数,确定了最佳污泥基活性炭制备条件:H2O2投加量为5%(质量分数),H2O2/Fe2+为5∶1(质量比),活化pH为3,活化时间为2.0h,污泥含固率为1.0%(质量分数),炭化温度为600℃,炭化时间为2.0h,炭化升温速率为10℃/min。此时,得到的污泥基活性炭吸附碘值为340mg/g,比表面积为353.563m2/g,孔容积为0.238cm3/g,微孔容积为0.095cm3/g。该活性炭对阳离子和阴离子染料(亚甲基蓝和甲基橙)具有良好的吸附性能,结果表明,对亚甲基蓝和甲基橙的吸附更符合Langmuir方程,且其饱和吸附量分别为71.53、57.73mg/g。对吸附动力学的拟合结果表明,该吸附更符合二级动力学方程。  相似文献   

8.
采用Fe/C微电解-超声波/Fenton氧化一活性炭吸附处理高色度、高COD、高盐分、高毒性的仲丁灵农药废水.试验结果表明:(1)Fe/C微电解处理仲丁灵农药废水的最佳条件:pH为4,铁屑投加量为0.5 mol/L,Fe与C摩尔比为2:1,反应时间为4h.(2)Fenton氧化的最佳条件:pH为4,FeSO4·7H2O投加量为0.03 mol/L,H2O2投加量为0.4 mol/L,反应时间为2 h.(3)在Fenton氧化的最佳条件下,超声波/Fenton氧化对COD去除率最高(平均约为80%).(4)当吸附时间为2 h、PH为6、活性炭投加量为20 g/L时.COD去除率可达90.5%.(5)采用Fe/C锻电解-超声波/Fenton氧化一活性炭吸附处理后,COD、色度均可达到<污水综合排放标准>(GB 8978-1996)中的一级标准.  相似文献   

9.
以活性焦和活性炭为载体,采用液相还原法制备了负载纳米铁,比较了两种负载纳米铁对TNT红水中难降解物质二硝基甲苯磺酸钠(包括2,4-DNT-3-SO3Na和2,4-DNT-5-SO3Na)的去除能力。实验结果表明,作为负载材料活性焦的相对有效比表面积与孔体积要优于活性炭,而且有利于更好地发挥出负载纳米铁的优势。单位面积活性焦负载纳米铁去除2,4-DNT-5-SO3Na的能力明显高于活性炭负载纳米铁,单位面积活性焦负载纳米铁去除2,4-DNT-3-SO3Na的能力在较小投加量条件下高于活性炭负载纳米铁,但均随投加量的增加而下降;而对于活性炭负载纳米铁,其单位面积去除能力基本不受投加量的影响,而且对二硝基甲苯磺酸钠的去除率高于活性焦负载纳米铁。耦合混凝沉淀的总去除效果表明,单位面活性焦负载纳米铁对2,4-DNT-5-SO3Na的去除能力高于活性炭负载纳米铁,而对2,4-DNT-3-SO3Na的去除能力则低于活性炭负载纳米铁。  相似文献   

10.
改性活性炭对石煤提钒废水中低浓度NH3-N和V等的吸附   总被引:1,自引:0,他引:1  
为研究石煤提钒离交尾水的深度处理技术,利用质量分数为1%、5%和10%的过氧化氢溶液对ZWY15型活性炭进行改性,得到3种改性活性炭即1%AC、5%AC和10%AC;探讨其对该废水中低浓度的NH3-N、V等的吸附效果。实验结果表明:AC或改性AC的加入可使废水的碱度升高,随着吸附时间及吸附剂投加量的增加,升高幅度增大,且不同改性AC对废水碱度提高的幅度不同;相较于未改性活性炭,过氧化氢改性活性炭对V的吸附效果明显提高,去除率最大可提高30%,对NH3-N的去除率提升约11%;当投加量为60 g/L时,10%AC可使废水中V的浓度降低至1.88 mg/L,此时废水中Cr、Cd和Zn的浓度分别降低至0.006、0.010和0.036 mg/L,均低于《钒工业污染物排放标准》(GB26452-2011)所规定的排放限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号