首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为探究高压电力电缆因过载或短路且线芯发热影响下的着火机制,使用加热棒模拟电缆内部故障热源,并开展电缆着火试验,分析内热源功率及电缆线芯截面积对电缆温升、着火时间等着火关键参数的影响,发现电缆从被加热至着火到燃烧的全过程可分为初期加热、热解气体逸出、着火、燃烧及熄灭4个阶段。结果表明:绝缘层熔融物的滴落会导致火焰形态发生变化,电缆各结构层表面温度的升温速率随内热源功率的增加及与内热源表面距离的减小而增大,功率的增加弱化了电缆线芯截面积对各层升温速率的影响;电缆的着火时间与内热源功率呈线性递减的关系。  相似文献   

2.
薛岩  方俊  王静舞 《火灾科学》2017,26(4):191-197
低压导线火蔓延的研究对于飞机和航天器的防火安全具有重要意义。针对镍铬合金线芯、聚乙烯(PE)绝缘层导线火蔓延过程中的熔融滴落现象,在低压舱内开展了不同气压、不同氧气浓度的大量实验研究,获得了导线熔融滴落频率、质量和火蔓延速度,以及不同氧浓度熔融滴落的上下限。结果表明:(1)在熔融滴落过程中,由于滴落会产生向上的动量,从而使火焰在滴落后发生突然的"跳动"现象,火焰高度先增加后降低;(2)滴落上限和滴落下限随着氧浓度的增加而降低,并且可以划分为3个不同的区域:火蔓延仅存区;滴落和火蔓延共存区;无滴落无火蔓延区。滴落上限和滴落下限下降曲线在50%氧浓度、5kPa压力发生会合,此后只有火蔓延而不存在滴落现象。(3)当压力降低时,由于线芯温度增加,线芯传导热量增加,导致绝缘层熔融速率加快,从而使得滴落频率增加,同时液滴的表面张力随着压力的降低而增加,使得低压下液滴的质量变大。  相似文献   

3.
为准确评价高密度聚乙烯(HDPE)粉尘爆炸敏感性和开展有效的粉尘防爆工作,采用Godbert-Greenwald恒温炉标准实验装置研究了典型HDPE粉尘云最低着火温度的分布特性,着重探讨了粉尘云浓度对不同喷尘压力条件下HDPE粉尘云最低着火温度的影响规律。研究表明:测试条件下HDPE粉尘云最低着火温度的变化处于360~445 ℃范围,随粉尘云浓度的增加呈现先降低后升高的总体趋势,粉尘云浓度为1.111 kg/m3时出现拐点,且粉尘云最低着火温度随喷尘压力的增加而降低。  相似文献   

4.
为研究煤油共生矿区含油煤尘最低着火温度的变化规律,选取3种含油浓度不同的煤样,采用粉尘云最低着火温度测定系统,研究含油煤尘云最低着火温度随含油浓度、喷尘压力及煤尘质量的变化规律。研究结果表明:含油煤尘的最低着火温度较不含油煤尘显著降低,且随着煤尘含油浓度的增加,煤尘中挥发分含量增多,煤尘云最低着火温度降低,爆炸危险性增强;低含油浓度煤尘,煤尘受原油挥发分影响较大,在含油浓度为5.7%,4.3%且质量浓度为1364~4550 g/m3时煤尘云最低着火温度随喷尘压力的增大呈先增大后减小的变化趋势,在5.7%,4.3%含油浓度且喷尘压力为0.05 MPa时煤尘MIT随煤尘质量浓度增加先降低后缓慢升高。高含油浓度煤尘,受煤尘团聚现象影响较大,煤尘云最低着火温度随喷尘压力的增加而升高,随煤尘质量的增加呈先减小后增大再缓慢减小的变化规律。  相似文献   

5.
付强 《火灾科学》2016,25(1):14-19
通过CFD计算软件对锥形量热燃烧实验条件下的多层电缆着火性能进行数值模拟计算,对比相应CONE电缆燃烧实验结果,其计算结果表明所建立的电缆模型所得计算结果能够较好预测电缆着火时间。在此基础上,对护套层、绝缘层厚度、线芯层直径等参数对着火时间的影响进行了分析,发现护套层厚度对着火时间影响最大,线芯层对着火时间影响较小;当护套层及绝缘层厚度达到一定数值之后,电缆着火时间将不再发生变化。另外,因为电缆由多层热特性各异的材料组成,不能简单的划分为热薄材料或者热厚材料,但就所模拟电缆而言,其着火时间在不同的热辐射强度下分别表现出与热薄材料或者热厚材料相似的变化规律。  相似文献   

6.
采用正弦波变化振荡的辐射热流,对热厚PMMA(聚甲基丙烯酸甲酯)的热解和着火过程进行研究,同时采用数值模拟,对实验结果进行验证和补充。结果表明,表面温度和深度温度随着时间而增加,温度由于周期性的辐射而发生振荡,而振荡幅度随着深度的增加而衰减;表面温度与深度温度振荡存在时间延迟;着火时间随着热流振荡周期的增大而减小,主要由于平均热流密度随着周期增大而增大。  相似文献   

7.
为研究不同煤质的煤尘层最低着火温度特性及其影响因素,选取褐煤、长焰煤、不粘煤、气煤、焦煤、瘦煤、贫煤和无烟煤8种不同变质程度的煤尘样品,测试分析8种煤尘层的最低着火温度及最低着火温度工况下煤尘层着火类型、着火时间,并研究了粒径和煤尘层厚度对煤尘层最低着火温度的影响。结果表明,随变质程度由褐煤逐渐增大,最低着火温度T_L由290℃不断增大。褐煤、长焰煤、不粘煤和气煤为a类着火,其着火时间较为接近,均值为19. 5 min,而焦煤、瘦煤和贫煤为c类着火,着火时间均值为11 min,表明随变质程度增大,虽然TL增大,但着火时间明显缩短。通过分析最低着火温度工况下不同煤质的温度T-时间t变化情况,认为褐煤、长焰煤、不粘煤和气煤煤尘层温度曲线中出现明显上下波动现象,是因为煤尘层厚度有限,无法长时间积聚能量。通过构建TL与粒径r、煤尘层厚度d的三维空间拟合模型,发现粒径小、厚度大的煤尘层具有更大的着火敏感性和爆炸潜伏性,更应加强防范。  相似文献   

8.
采用DSC-TGA(差示扫描量热-热重分析)同步热分析仪对软质聚氨酯泡沫(聚氨酯软泡)在不同氧气体积分数(0、10%、30%、50%)和不同加热速率(10 K/min、20 K/min、50 K/min)下热解到800℃的过程及其对阴燃的影响进行了研究.结果表明,当氧气体积分数介于10% ~ 50%时,聚氨酯软泡热失重DTG曲线只有1个峰;当氧气体积分数降低到10%时,DTG曲线开始逐渐分离为2个峰;当氧气体积分数降为0(即氮气气氛)时,DTG曲线已经明显分为2个峰.这表明氧气体积分数对聚氨酯软泡热解特性具有重要作用.氧气体积分数和加热速率降低均对聚氨酯软泡的热解有抑制作用,均能减小阴燃传播速率和向明火转化的可能性.加热速率降低主要是延长了聚氨酯软泡的热解周期,从而减小了热解可燃气体积分数和放热速率.氧气体积分数降低对聚氨酯软泡热解的影响相对复杂的多:当氧气体积分数从10%降低到0时,主要提高了聚氨酯软泡的分解温度,而对热解速率影响不大;当氧气体积分数介于10%~50%时,氧气体积分数减小主要会降低聚氨酯软泡的热解速率、放热速率和放热量而对热解温度影响相对不大.氧气体积分数和加热速率降低抑制了多元醇的分解,而多元醇是聚氨酯软泡维持阴燃或向明火转化的主要物质及能量来源.  相似文献   

9.
为了研究典型易燃烟煤的着火特性,预防和控制煤尘爆炸,采用粉尘云最低着火温度实验装置和同步热分析仪,分别研究崔木长焰煤、东荣二矿气煤、察哈素不粘煤和丁集焦煤4种烟煤在不同条件下的煤尘云最低着火温度和煤尘热解过程。研究结果表明:当煤尘云浓度从0.90 kg/m3上升到5.99 kg/m3时,4种煤尘的最低着火温度先降后升,在1.50 kg/m3煤尘云浓度时,4种煤尘的最低着火温度均达到最小,分别为450,580,610,620 ℃。随着升温速率的升高,煤的着火温度、峰值温度、燃尽温度和煤样最大放热量整体呈上升趋势,失重率整体呈下降趋势,在5~20 ℃/min的升温速率范围内,崔木长焰煤、东荣二矿气煤、察哈素不粘煤和丁集焦煤热解过程中的最小着火温度分别为354.17,404.37,443.18,484.13 ℃。4种烟煤的最低着火温度和热解过程中的最小着火温度有相对应关系,研究结论可为以上4个煤矿的具体煤样研究和数据分析提供参考依据。  相似文献   

10.
研究了挤塑型聚苯乙烯(XPS)保温材料两种不同着火方式下的着火温度。采用南京江宁仪器分析厂生产的DW-02型点着温度测定仪对XPS的着火温度进行了测定。利用辐射引燃仪得到了2.2 cm厚挤塑型保温板在不同加热功率下的着火温度。结果表明:DW-02型点着温度测定仪测得的挤塑型聚苯乙烯保温材料的点燃温度约为355℃;热辐射引燃仪测得的2.2 cm厚保温板在不同加热功率下的着火温度是365-370℃,且引燃时间随着辐射引燃仪加热功率的增大而逐渐缩短;明火火源比热流辐射容易引燃挤塑型聚苯乙烯保温板。研究结论对FDS模拟挤塑型聚苯乙烯燃烧特性时,材料热解参数的设定有指引作用,对实际工程中遴选合适的外墙保温材料具有重要的参考价值。  相似文献   

11.
In this study, the dependence of minimum ignition energies (MIE) on ignition geometry, ignition source radius and mixture composition is investigated numerically for methane/air and iso-octane/air mixtures. Methane and iso-octane are both important hydrocarbon fuels, but differ strongly with respect to their Lewis numbers. Lean iso-octane air mixtures have particularly large Lewis numbers. The results show that within the flammability limits, the MIE for both mixtures stays almost constant, and increases rapidly at the limits. The MIEs for both fuels are also similar within the flammability limits. Furthermore, the MIEs of iso-octane/air mixtures with a small spherical ignition source increase rapidly for lean mixtures. Here the Lewis number is above unity, and thus, the flame may quench because of flame curvature effects. The observations show a distinct difference between ignition and flame propagation for iso-octane. The minimum energy required for initiating a successful flame propagation can be considerably higher than that required for initiating an ignition in the ignition volume. For iso-octane with a small spherical ignition source, this effect was observed at all equivalence ratios. For iso-octane with cylindrical ignition sources, the phenomenon appeared at lower equivalence ratios only, where the mixture's Lewis number is large. For methane fuel, the effect was negligible. The results highlight the significance of molecular transport properties on the decision whether or not an ignitable mixture can evolve into a propagating flame.  相似文献   

12.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   

13.
An experimental investigation of flammability limits of hydrogen, methane and propane in air and oxygen at reduced pressures was carried out. A slow influence of sizes of an experimental vessel of a diameter higher than 125 mm on the flammability limits was revealed, but an influence of a type of an oxidizer (air or oxygen) and an ignition energy is significant. Critical values of an initial pressure for a possibility of a flame propagation were determined. The limiting values of the ignition energy were determined, for which an elevation of this parameter does not influence the critical pressure and the flammability region. A qualitative interpretation of obtained experimental results is given, which is based on a peculiarities of a flame initiation.  相似文献   

14.
Several safety characteristics of dusts are determined in the 20-L-sphere (also known as SIWEK Chamber) according to international standards. Dust cloud ignition is carried out using pyrotechnical igniters. Due to various disadvantages of such igniters the need for alternative ignition sources arises again and again. An alternative could be an ignition source which is known as “exploding wire” or “fuse wire”. The paper presents test results of a comparative study between both ignition sources for the determination of the safety characteristics “Maximum Explosion Pressure” and “Maximum Rate of Explosion Pressure Rise” of five selected dusts in the 20-L-sphere. In addition to that the ignition mechanisms of both ignition sources were analyzed by high speed camera recordings and the ignition energy was determined with electric and calorimetric recordings. The paper shows results of measurements of the ignition energy of both ignition sources as well as sequences of the flame propagation.  相似文献   

15.
For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested.The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out but are not standardized yet. Using the exploding wire, the ignition energy can be varied from 2 J to 10 000 J (2 x 5000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system.Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results.  相似文献   

16.
The safe operation of hydrocarbon liquid-phase oxidation by air or oxygen requires the knowledge on the flammability of hydrocarbon/oxygen mixtures in both the vapor space and vapor bubbles. The latter is of particular importance in situation where pure oxygen is used as the oxidant as most bubbles are expected to be flammable and explosive. New experimental findings are presented for ignition and explosion in cyclohexane liquid under oxygen oxidation conditions. A bubble column is constructed and fitted with multiple igniters. Experiments were performed at liquid temperatures between 373.15 and 423.15 K under various flow rates of pure oxygen. Two drastic different ignition and explosion behaviors were observed. The first is a typical bubble explosion from the direct ignition of the flammable bubbles in the liquid. The explosion occurs immediate following the ignition and do not produce significant energy that endanger the system. The other is a remote, delayed ignition and explosion in the vapor space that can produce significant overpressure and endanger the system. The explosion is attributed to the ignition of flammable vapor space by active free radicals from cyclohexyl hydroperoxide decomposition. A mechanism is proposed for the remote, delayed ignition to occur in the oxidation system. It is concluded that explosion in an oxidizing, bubbly liquid is not only a likely scenario but also a severe scenario, and cyclohexane oxidation should not be carried out directly with pure oxygen and without any inerting.  相似文献   

17.
The detonation processes in chemically active bubble liquids under elevated initial pressures are investigated theoretically. It is shown, that supersonic regimes of wave propagation can exist, if the initial pressure is relatively high and the volume fraction of the bubbles is relatively small. Characteristic values of the bubble detonation wave pressure at sub- and supersonic regimes differ by an order of magnitude.The principal possibility of detonation wave structure transformation in the case of propagation in the mixture with high initial pressure and longitudinal gradient of bubble volume fraction is predicted. The leading shock may transform into a smooth wave of compression.The Chapman-Jouguet conditions for self-sustaining supersonic bubble detonation wave is obtained.A model of shock induced single bubble dynamics and ignition taking into account the real properties of the liquid, inter-phase transition processes, mechanical mixing of phases, ignition delay and continuous shift of chemical equilibrium have been described. Calculations for the oxygen containing bubble in liquid cyclohexane have been performed.  相似文献   

18.
Coal mine refuge chambers are new devices for coal mine safety which can provide basic survival conditions after gas explosion. In order to simulate the propagation of underground methane/air mixture blast wave, and check structural safety of coal mine mobile refuge chamber, an underground tunnel model and a refuge chamber model have been established based on explicit nonlinear dynamic ANSYS/LS-DYNA 970 program. Results show that the reflected wave pressure on the impact surface was about two times higher than that on the incident one. The relationship between the pressure fields of the chamber was analyzed. The maximum pressure of gas explosion reached about 0.71 MPa, and the pulse width was 360 ms. The maximum absolute displacement and stress occurs at the main door center and the connection of stiffeners and the front plate, respectively. The entire coal mine mobile refuge chamber was in elastic state and its strength and stiffness meet the safety requirements. The cabin door, the front plate and the connecting flange at cabin back as well as the stiffeners on each side were the most critical components. Suggestions were put forward for the refuge chamber.  相似文献   

19.
透水事故是井下常发灾害之一。为满足井下紧急避险要求,救生舱不仅要具备持续耐高水压的能力,而且还需保持良好的水密性。为了检验救水舱的水密及承压性能,应用ANSYS模拟软件对舱体应力变化进行了数值模拟,确定了舱体应力值可能偏大的区域,进而选定了现场试验应变监测点;通过水压试验中心现场试验,制定详细升压方案,观察及分析试验现场和试验应变数据。实验结果表明,救生舱在外界水压达到3MPa的情况下,舱体未发生渗漏及明显变形,救生舱水密及承压性能良好。  相似文献   

20.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号