首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested whether ingesting toxic algae by heterotrophic prey affected their nutritional value to crab larval predators, using toxic algal strains that are either ingested directly by larval crabs or rejected by them. Ingestion of toxic strains of the dinoflagellates Alexandrium andersoni and A. fundyense by the rotifer Brachionus plicatilis was confirmed. Rotifers having ingested either algal type for five days were fed to freshly hatched larvae of three crab species, with larval survival and stage durations determined. For both algal/rotifer treatments in all three crab species, larvae fed algae directly died during the first zoeal stage, while those fed rotifers that had been fed either algal strain survived to the experiment’s end (zoeal stage 3). Survival was lower, and stage duration longer, for larvae fed rotifers cultured on toxic algae when compared to those fed non-toxic algae. The role of toxic algae in the planktonic food web may be influenced by its direct or indirect ingestion by larval crabs.  相似文献   

2.
Growth rates of anchovy larvae, Engraulis mordax, reared for 19 days under constant environmental conditions on a diet of laboratory-cultured organisms, exceeded the growth rates of anchovies fed on a diet of wild plankton. The rotifer Brachionus plicatilis was found to be a nutritous food source when fed to the larvae in concentrations of 10 to 20/ml and in combination with the dinoflagellate Gymnodinium splendens (100/ml). Optimum conditions were determined for mass culture of the rotifer. A high food concentration was the most important parameter needed to assure a high yield of rotifers. Large volumes (464 I) of the unicellular flagellate Dunaliella sp. were cultured for feeding the rotifers. The rotifer culture technique described produces approximately 2.5×106 organisms/day, providing a reliable food source for rearing studies. The lengths of B. plicatilis (without eggs) ranged between 99 and 281 , most rotifers being larger than 164 and less than 231 . Individuals weighed 0.16 g and contained 8×10-4 cal.  相似文献   

3.
The transfer of chlorinated hydrocarbons (CHC) in a laboratory simulation of a three trophic level marine food chain was studied. The food chain consisted of the algal flagellate Dunaliella sp., the rotifer Brachionus plicatilis, and the larva of the Northern anchovy Engraulis mordax. CHC were introduced into the seawater at concentrations representative of near-shore conditions off southern California without the use of dispersing agents. Each trophic level appeared to be in a steady-state at the time of first sampling, 5 days after inoculation. Apparent partition coefficients were calculated for each trophic level. The CHC contamination in the diet of the rotifers and anchovy larvae was also calculated. Unfed anchovy larvae accumulated the same amount of CHC as fed larvae and the final concentration appeared to be dependent on the CHC concentration in the seawater. The data in this report suggest that CHC accumulation is not a food-chain phenomenon but rather the result of direct partitioning of the compounds between the seawater and the test organisms.  相似文献   

4.
We examined feeding by larval weakfish, Cynoscion regalis (Bloch and Schneider), in laboratory experiments conducted during the 1991 spawning season. under natural conditions weakfish larval development is ca. 3 wk, and we ran separate experiments with larvae of five different ages (5, 8, 11, 14, and 17 d post-hatching). We used two different size classes of rotifers (Brachionus plicatilis) and brine shrimp nauplii (Artemia sp.) as prey organisms. Contrary to results of previous research, weakfish larvae did not select prey based on size alone. When prey abundance was above 100 itemsl-1 weakfish, larvae always chose large rotifers (length = 216 m) over small rotifers (length = 160 m). At 11 d post-hatching, larvae switched their diet from large rotifers to small brine shrimp nauplii (length = 449 m); however, when fed small rotifers and small brine shrimp nauplii the change in diet occurred at 14 d post-hatching. This pattern of selectivity was maintained in each larval age class. Early-stage larvae (5 and 8 d post-hatching) did not feed selectively when prey abundance was less than 100 itemsl-1. Late-stage larvae (17 d post-hatching) fed selectively at abundances ranging from 10 to 10000 items-1. Lwimming speeds of prey items, which ranged from 1 to 6 mms-1, had no consistent effect on prey selection. These results suggest that weakfish larvae are able to feed selectively, that selectivity changes as larvae age, and that selectivity is also influenced by prey abundance.  相似文献   

5.
Filtration rates and the extent of phagocytosed food particles were determined in the offshore lamellibranchs Artica islandica and Modiolus modiolus in relation to particle concentration, body size and temperature. Pure cultures of the algae Chlamydomonas sp. and Dunaliella sp. were used as food. A new method for determining filtration rates was developed by modifying the classical indirect method. The concentration of the experimental medium (100%) was kept constant to ±1%. Whenever the bivalves removed algae from the medium, additional algae were added and the filtration rate of the bivalves expressed in terms of percentage amount of algae added per unit time. The concentration of the experimental medium was measured continuously by a flow colorimeter. By keeping the concentration constant, filtration rates could be determined even in relation to different definite concentrations and over long periods of time. The amount of phagocytosed food was measured by employing the biuret-method (algae cells ingested minus algae cells in faeces). Filtration rates vary continuously. As a rule, however, during a period of 24 h, two phases of high food consumption alternate with two phases of low food consumption during which the mussels' activities are almost exclusively occupied by food digestion. Filtration rate and amount of phagocytosed algae increase with increasing body size. Specimens of A. islandica with a body length of 33 to 83 mm filter between 0.7 to 71/h (30–280 mg dry weight of algae/24 h) and phagocytose 21 to 122 mg dry weight of algae during a period of 24 h. The extent of food utilization declines from 75 to 43% with increasing body size. In M. modiolus of 40 to 88 mm body length, the corresponding values of filtration rate and amount of phagocytosed algae range between 0.5 and 2.5 l/h (20–100 mg dry weight of algae) and 17 to 90 mg dry weight of algae, respectively; the percentage of food utilization does not vary much and lies near 87%. Filtration rate and amount of phagocytosed algae follow the allometric equation y=a·x b. In this equation, y represents the filtration rate (or the amount of phagocytosed algae), a the specific capacity of a mussel of 1 g soft parts (wet weight), x the wet weight of the bivalves' soft parts, and b the specific form of relationship between body size and filtration rate (or the amount of phagocytosed algae). The values obtained for b lie within a range which indicates that the filtration rate (or the amount of phagocytosed algae) is sometimes more or less proportional to body surface area, sometimes to body weight. Temperature coefficients for the filtration rate are in Arctica islandica Q10 (4°–14°C)=2.05 and Q10 (10°–20°C)=1.23, in Modiolus modiolus Q10 (4°–14°C)=2.33 and Q10 (10°–20°C)=1.63. In A. islandica, temperature coefficients for the amount of phagocytosed algae amount to Q10 (4°–14°C)=2.15 and Q10 (10°–20°C)=1.55, in M. modiolus to Q10 (4°–14°C)=2.54 and Q10 (10°–20°C)=1.92. Upon a temperature decrease from 12° to 4°C, filtration rate and amount of phagocytosed algae are reduced to 50%. At the increasing concentrations of 10×106, 20×106 and 40×106 cells of Chlamydomonas/l offered, filtration rates of both mollusc species decrease at the ratios 3:2:1. At 12°C, pseudofaeces production occurs in both species in a suspension of 40×106, at 20°C in 60×106 cells of Chlamydomonas/l. At 12°C and 10–20×106 cells of Chlamydomonas/l, the maximum amount of algae is phagocytosed. At 40×106 cells/l, the amount of phagocytosed cells is reduced by 26% as a consequence of low filtration rates and intensive production of pseudofaeces. At 20°C and 20–50×106 cells of Chlamydomonas/l, the maximum amount of algae is sieved out and phagocytosed; the concentration of 10×106 cells/l is too low and cannot be compensated for by increased activity of the molluscs. With increasing temperatures, the amount of suspended matter, allowing higher rates of filtration and food utilization, shifts toward higher particle concentrations; but at each temperature a threshold exists, above which increase in particle density is not followed by increase in the amount of particles ingested. Based on theoretical considerations and facts known from literature, 7 different levels of food concentration are distinguishable. Experiments with Chlamydomonas sp. and Dunaliella sp. used as food, reveal the combined influence of particle concentration and particle size on filtration rate. Supplementary experiments with Mytilus edulis resulted in filtration rates similar to those obtained for M. modiolus, whereas, experiments with Cardium edule, Mya arenaria, Mya truncata and Venerupis pullastra revealed low filtration rates. These species, inhabiting waters with high seston contents, seem to be adapted to higher food concentrations, and unable to compensate for low concentrations by higher filtration activities. Adaptation to higher food concentrations makes it possible to ingest large amounts of particles even at low filtration rates. Suspension feeding bivalves are subdivided into four groups on the basis of their different food filtration behaviour.  相似文献   

6.
M. Pagano  R. Gaudy 《Marine Biology》1986,90(4):551-564
The feeding activity of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, was studied in 1978–1979 using various foods (natural particles, monospecific algal cultures, and artificial food) under different conditions of temperature and salinity. Experiments with Amphidinium sp. or Tetraselmis maculata as food showed that the ingestion rate increased with food concentration according to an asymptotic or a linear relationship. Although of slightly smaller size, T. maculata was ingested at a higher rate than Amphidinium sp. Large maximum daily rations (up to 150% of body carbon with Amphidinium sp. and up to 250% with T. maculata) were attained. These values, which greatly exceed those generally obtained with marine copepods, could result from adaptation of the feeding processes of this copepod to its very rich trophic environment. A significant correlation was demonstrated between ingestion rate and fecal pellet production using T. maculata as food. Therefore, daily fecal production was used as an index of feeding activity in experiments carried out with natural food, T. maculata cultures and artifical food (Tetramin). Increased temperature generally resulted in an activation of grazing and filtration rates and of fecal production at low temperatures (10° to 15°C), but a strong decrease was observed over 22°C. Differences of 10 S over or under the natural salinity level led to a decrease in fecal production, suggesting unachieved acclimatization to salinity variation due to a too short acclimation period before the experiments. Fecal pellet production was higher during the day than during the night. It depended also on the quality of food used: high values were obtained with T. maculata, Phaeodactylum tricornutum, Rhodomonas sp. and Chlamydomonas sp., low values with Chlorella sp. and Amphidinium sp., and medium values with natural food material. The assimilation rate (A) was calculated by Conover's methods. A significant negative correlation was obtained between A and the ash content of the food. High assimilation rates were attained with chlorophycean algae, while natural particulate food produced variable assimilation rates, depending on the amount of inorganic material present.
Biologie d'un copépode des mares temporaires du littoral méditerranéen français: Eurytemora velox
  相似文献   

7.
Nauplii of Calanus pacificus were raised on a mixture of algae. Details of the mouth-parts, such as denticles, labial palps and lobes, setations and structure of the masticatory teeth were examined by scanning electron microscopy (SEM). Under the experimental conditions (15°C and 300 gC l-1), exponential growth coefficients for the period Nauplii II–VI were 0.179 for carbon and 0.228 for nitrogen. C:N ratios dropping from 5.1 to 4.7. Growth was isochronous, each stage lasting 1.5 days. Respiratory losses were 15 to 19.6% of body carbon daily. Nauplii raised on a given alga showed higher rates of ingestion in the presence of this food, compared to nauplii switched to other algae. Minimal threshold concentrations for feeding were found, depending on the size of the food offered and ranging from 5.8 gC I-1 for Lauderia borealis (28.7 m spherical diameter) to 47.1 gC 1-1 for Chlamydomonas sp. (11.0 m). Unlike the Copepodite I stage, Nauplii II–VI larvae were not able to ingest small cells such as Isochrysis galbana (4.3 m), or very large ones such as Ditylum brightwellii (47.5 m) at more than maintenance rations. Below the critical concentration for maximal feeding, ingestion was clearly dependent on size of the cells offered, but the size-dependent relationship was different for diatoms and non-diatoms. Filtering rates increased from a threshold concentration to a maximal rate at about 50 gC 1-1, and decreased at higher concentrations. Critical concentrations ranged from 125 gC 1-1 for L. borealis to 1000 gC 1-1 for Chlamydomonas sp. Maximal daily rations ranged between 100 and 150% of body carbon.  相似文献   

8.
We developed a predictive relationship to determine the grazing rate of Brachionus plicatilis at given temperatures and food concentrations; this function could be applied to experimental culturing and aquaculture practices. Grazing experiments were conducted at temperatures between 5°C and 40°C and at food concentrations, of the flagellate Isochrysis galbana, ranging between ~0 and 106 ml-1. In total, 136 grazing rates were determined, using the prey depletion method, for rotifers acclimated to treatments for 0.5 or 4 h. The response of grazing rate to temperature and food concentration was described using a model that combined a rectangular hyperbolic function for food concentration and a sigmoidal function for temperature. Using non-linear curve-fitting methods an equation was obtained: G=(452F)/(159000+F)Ǵ.94/(1+2190002T-4.35) , where G is the grazing rate (flagellates rotifer-1 min-1), F is the food concentration (flagellates ml-1), and T is temperature (°C). The equation indicates a maximum grazing rate of ~35 prey rotifer-1 min-1, above ~4᎒5 prey ml-1 and 25°C.  相似文献   

9.
A model food chain, utilizing 65Zn-labeled and nonlabeled food organisms, was used to measure the relative contributions of food and water to Zn accumulation by Gambusia affinis and Leiostomus xanthurus. Chlamydomonas sp. was fed to Artemia sp. which in turn was fed to G. affinis and L. xanthurus. A trace metal-chelate buffer system was used to maintain a stable free Zn ion activity (10-8.5 mol l-1) in the experimental seawater. Food represented 78 to 82% of total accumulation of 65Zn by the fish. Thus, food cannot be ignored in assessing the accumulation and toxicity of trace metals.  相似文献   

10.
Five species of unicellular algae of the same age, cultured bacteria-free under standard growth conditions, were analyzed for chemical composition and fed to different size classes of Artemia salina. The green algae Chlamydomonas sphagnicolo, Dunaliella viridis, Platymonas elliptica and Chlorella conductrix had significantly higher percentages of protein and lipid than did the diatom Nitzschia closterium. Total ash value was highest in populations of N. closterium. Shrimp fed Chlamydomonas sphagnicolo cells assimilated highest percentages of organic matter, while those fed Chlorella conductrix had lowest assimilation rate. Respiration rates were inversely proportional to animal size (weight) and algal cell volume. Growth, survival, rate of sexual maturtion, and sex ratio were dependent on the growth and assimilation efficiencies obtained from each respective algal food. Shrimp fed Chlamydomonas sphagnicolo, D. viridis, or P. elliptica cells displayed highest growth and assimilation efficiencies.  相似文献   

11.
Environmental salinity is important in defining Brachionus plicatilis sibling species distributions. However, while salinity influences distributions, sibling species often co-exist. Three different mechanisms potentially account for the partial co-occurrence of sibling species: (1) siblings have differing salinity tolerances that partially overlap; (2) siblings physiological tolerances may be commonly broad, but relatively small differences in tolerances differentiate distributions via interactions e.g. competition; or (3) siblings distributions may be influenced by physical factors other than salinity. Here, we assess the extent of salinity tolerance in three B. plicatilis sibling species (B. plicatilis 6TUR, B. plicatilis IOM and B. rotundiformis 6TOS) by measuring population growth rate (μ, day−1) and egg development time in response to salinity (5–60‰) and salinity fluctuations (≤ Δ40‰). Sibling species were identified by analysis of the mitochondrial COI gene, and salinity responses were compared by regression analysis. Responses differed significantly between siblings, although the broad trends were similar. Positive growth occurred at all salinities, and highest growth rates ranged between 0.93 and 1.08 day−1 at 16–18‰. Rapid changes in salinity reduced growth rates, but net mortality occurred only in one treatment (100% mortality on transfer from 10 to 40‰). Egg development time was largely invariant with salinity except for B. plicatilis IOM and where rotifers were transferred from 30 to 60‰. We indicate that several siblings are similarly euryhaline and tolerate salinity fluctuations. Undoubtedly, wide tolerances in B. plicatilis are adaptations to ephemeral and seasonally variable habitats. Given common broad salinity tolerances, it is unlikely that the differential distributions of sibling species are a direct result of physiological constraints. Instead, we illustrate using a simple model that subtle differences in physiological tolerances may have important impacts on interactions between sibling species, which may in turn influence distributions.  相似文献   

12.
The lipid profiles of a few species of marine unicellular algae and yeast were studied with emphasis on fatty acids as part of a search for the nutritional value of plankton to the diet of marine fish larvae commonly used in marine hatcheries. The general proximate chemistry of rotifers was closely related to the proximate chemistry of the diet organism, exhibiting a higher content of protein and carbohydrate and a lower content of lipid. Major lipids in all algae, yeast and rotifers comprised mono-, di- and tri-glycerides and polar lipids. The algae Chaetoceros gracilis Schutt, Isochrysis galbana Parke and their respective algaefed rotifers exhibited higher amounts of neutral lipids, consisting mainly of cyclic and branched polyunsaturated components. Fatty acid composition of the algae was species-specific, with the highest ratio of polyethylenic to saturated and monoethylenic acid in I. galbana and Phaeodactylum tricornutum Bohlin, and the highest content (15%) of n-3 highly unsaturated fatty acids in Nannochloropsis salina and P. tricornutum. A closely mirrored distribution of the fatty acids, but with a lower amount of n-3 highly unsaturated fatty acids, was present in the respective algae-fed rotifers. Comparison of the fatty acid spectrum of Artemia sp. and Euterpina acutifrons grown in the laboratory on I. galbana with zooplankton samples of E. acutifrons and Oitona nana collected from the sea showed a higher concentration of docosahexaenoic acid (22:6 n-3) in the naturally collected sample. The results indicate that the efficacy of the food algae C. gracilis and I. galbana in increasing the survival of fish larvae in marine hatcheries is not obvious on the sole basis of fatty acid composition.  相似文献   

13.
Using radiotracer (14C) and microscopic observation, we demonstrated that mussels (Mytilus edulis and Perna viridis) could be predators of mesozooplankton (rotifer Brachionus plicatilis). At radio-labelled rotifer densities of 0.1, 0.2, 0.5, 1.0 individual ml−1, faecal pellets of mussels showed different degrees of radio signals and most of the faecal pellets were expelled 4 h after pulse feeding on rotifers. The maximum gut retention time (GRT) of 14C-labelled rotifers in the digestive diverticula did not o show any significant difference between the two mussel species or the different densities of rotifers, and the averaged GRT was 43.4±3.06 h (mean ± SE). At a rotifer density of 4.5 individual ml−1, rotifer lorica pieces and rotifer bodies without eggs were found in faeces of M. edulis, while in the pseudofaeces, only complete rotifer bodies were found.  相似文献   

14.
Applebaum  S. L.  Holt  G. J. 《Marine Biology》2003,142(6):1159-1167
Laboratory-reared red drum (Sciaenops ocellatus) larvae were used to evaluate the potential of chymotrypsin as an indicator of nutritional condition in marine fish larvae. The response of chymotrypsin activity to food deprivation and reductions in nutrient intake was determined. Enzyme activity declined rapidly to undetectable levels in food-deprived larvae 6–18 days old. Larvae fed poor-quality live prey (starved rotifers, Brachionus plicatilis) exhibited reductions in growth (18%) and enzyme activity (84%) relative to larvae fed high-quality prey (enriched rotifers). Potential sources of variation in chymotrypsin activity unrelated to nutritional status, including diel periodicity, and exogenous enzymes sources were examined. A diel pattern in chymotrypsin activity was detected with an 8.7-fold increase in activity occurring from low to high points during a 24-h period. Highest activity levels occurred late in the day (1600 hours) and lowest activity in the morning prior to feeding (0800 hours). The estimated contribution of exogenous enzymes from prey in the digestive tract to measurements of larval enzyme activity was small, reaching a maximum of 4.1% on day 18 in well-fed larvae. Results indicate that exogenous enzymes will not lead to the misclassification of larvae in poor condition. A relationship between chymotrypsin activity and standard length was established for well-fed and food-deprived larvae that could potentially be used to determine the nutritional condition of wild-caught larvae.  相似文献   

15.
I investigated selective particle ingestion by oyster larvae (Crassostrea virginica) feeding on natural seston from Chesapeake Bay and laboratory-cultured algae of different sizes or chemical content. In 15 of 16 experiments with complex natural suspensions as food, small(<150 m) and large (>150 m) larvae selected most strongly for small (2 to 4 m) food particles, but in the presence of a large (>10 m)-cell dinoflagellate bloom, large larvae strongly selected much larger (22 to 30 m) food material (presumably dinoflagellates). When fed simplified mixtures of four cultured algal species (Synechococcus bacillaris, Isochrysis sp., Dunaliella tertiolecta, and Prorocentrum minimum) ranging in size from 1 to 11 m, small larvae preferred 1 m algae while large larvae preferred 11 m algae. In experiments with algal mixtures, and with suspensions of natural particles and added algae, large larvae preferred algal species harvested from exponential-phase cultures over other species from stationary-phase cultures. Larval ingestion rates of the cultured alga Thalassiosira pseudonana were about three times higher for cells with a low carbon:nitrogen ratio (7.2:1) than for high C:N ratio (16.2:1) cells when these cells were offered separately in suspensions of equal concentration. As a result, more algal cells, algal C, and algal N was ingested by larvae fed low C:N cells. However, larvae did not show a significant preference for either type of cell when they were offered in a 1:1 cell mixture. Feeding patterns of C. virginica larvae in natural food suspensions can vary with the composition of these complex suspensions, and ingestion seems dependent not only on the size, but on the growth rate and chemical quality of food particles.  相似文献   

16.
The hepatocytes of milkfish fry offered different artificial diets (carbohydrate-, lipid-, protein-oriented) and live food (Artemia spp., Brachionus plicatilis) differ considerably both qualitatively and quantitatively as was shown by means of transmission electron microscopy and planimeter. Food deprivation, too, resulted in ultrastructural alterations of milkfish fry hepatocytes. Thus, this cell type might be used as an indicator of quality and quantity of food in teleosts.Contribution No. 131 of the SEAFDEC Aquaculture Department  相似文献   

17.
The gammaridean amphipods Cymadusa compta (Smith), Gammarus mucronatus Say, Melita nitida Smith and Grandidierella bonnieroides Stephensen from a seagrass community in the Indian River estuary of Florida (USA) fed variously upon large drift algae, small algae epiphytic on seagrasses and seagrass leaf debris and detritus. Consumption was measured in the laboratory using an index (CI) equivalent to mg ingested mg-1 amphipod day-1. Observations revealed that the amphipods fed by macrophagy, an attack upon large algae and seagrass debris, and by microphagy, small particle detritus feeding and scraping of plant surfaces for diatoms and other epiphytic algae. C. compta was a macrophagous feeder with a generalized diet of algae and seagrass debris, preferring epiphytic algae and drift algae at mean rates of 1.10 and 0.87 CI, respectively. Gammarus mucronatus fed upon epiphytes and seagrass debris equally at mean rates of 0.90 and 0.97 CI, respectively. The diet of M. nitida condisted primarily of epiphytes, consumed at an average rate of 1.05 CI. Grandidierella bonnieroides fed in a specialized microphagous manner, grooming plant surfaces for small particle detritus and diatoms at an approximate CI rate of 1.45. Assimilation of plants ingested, as reflected by carbon-14 uptake, varied similarly among the 4 amphipods. Epiphytic algae appeared to be most useful as food, providing means of 41 to 75% carbon-14 uptake as ingesta. Drift algae and seagrass debris were of less value, with means varying between 11 and 24 % of carbon-14 uptake by the amphipods. The data show a pattern of feeding which resembles resource partitioning of food both by size and kind. Other evidence, however, including population limitation by predators and an apparent overabundance of food, indicate that resource partitioning as seen may be an artifact, and one which has no co-evolutionary basis among the present species.Contribution No. 102 of Harbor Branch Foundation, Inc.  相似文献   

18.
The nutritional value of Artemia sp. as food for marine fish and crustacean larvae has been linked to the level of its polyunsaturated fatty acid (PUFA) content. Experiments in August 1984 were conducted to determine the effects of various artificial diets and algae on fatty acid composition of PUFA-deficient Artemia sp. (Utah GSL strain) and their resulting value as food for postlarvae of the prawn Penaeus monodon (Fabricius). Nauplii of the brine shrimp were grown on extracts of corn, copra, soybean and rice bran containing precursors (C18) to long-chain PUFA and also on algal species containing different levels of long-chain PUFA (C20). The nauplii were then used as food for P. monodon postlarvae. The results revealed that absence of C20 polyunsaturates from the feeds and their presence in the algae were reflected in the polyunsaturated fatty acid content of the tissues of Artemia sp. When fed with brine shrimp fed on algae, P. monodon displayed better postlarval survival and significantly higher growth; related to the content of polyunsaturated fatty acids in Artemia sp. A practical feeding approach in prawn hatcheries would be to grow Artemia sp. on a cheap diet such as rice bran, and then to enhance its nutritional value with a diet high in PUFA prior to harvesting, in order to improve hatchery production.  相似文献   

19.
The hypothesis that lower retention efficiencies of filter-feeding copepods for small particles should result in different ingestion rate versus food concentration curves for different-sized foods was tested using Temora longicornis (Müller) fed natural phytoplankton. The copepods were fed different natural phytoplankton assemblages, which varied in their species and size distribution. Volume ingestion rates were an asymptotic function of food concentration, with maximum ingestion rates measured at food concentrations exceeding 5 to 10x 106 m3 ml-1, which were less than those occurring in the natural waters in which the copepods and phytoplankton were collected. Maximum volume ingestion rates increased linearly by a factor of 3.5, as the diameter of the particle forming the peak in the food size distribution increased fron 5 m (primarily microflagellates) to 30 m (mostly large diatoms). These results suggest that natural and pollutant-induced size reductions in natural phytoplankton could markedly decrease the volume of food consumed by filter-feeding copepods.Contribution No. 243 of the Marine Sciences Research Center  相似文献   

20.
ABSTRACT

We hypothesised that at higher densities herbivorous rotifers through their allelochemicals affect the survival and reproduction of cladocerans. To test this, we separately cultured three rotifers (Brachionus calyciflorus, Brachionus havanaensis, and Plationus patulus) and three cladocerans (Ceriodaphnia dubia, Daphnia pulex, and Moina macrocopa). Chlorella vulgaris was used as food and reconstituted moderately hard water was used as medium. The conditioned-medium (CM) obtained from each of rotifer species was used to conduct cohort life table tests of cladocerans. SDS PAGE electrophoresis revealed the molecular weights of proteins present in the rotifer conditioned medium were 55–63?kDa. Compared to C. dubia and D. pulex, Moina was more resistant to rotifer-mediated chemicals. Gross reproductive rate of C. dubia was significantly stimulated by the rotifer-CM. However, gross and net reproductive rates of D. pulex were strongly reduced (72–85%) due to P. patulus-CM but not from the other two rotifer species. The rate of population increase of M. macrocopa was significantly reduced by the rotifer CM. Overall, about 46% (adverse effect: 24%; stimulatory impact: 22%) of the life history variables in controls significantly differed from rotifer-CM treatments, thus proving our hypothesis that rotifer-mediated allelochemicals had some effect on the cladoceran life history variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号