首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
"A Mission-Driven Discipline": the Growth of Conservation Biology   总被引:4,自引:0,他引:4  
Abstract:  Conservation biology emerged in the mid-1980s, drawing on established disciplines and integrating them in pursuit of a coherent goal: the protection and perpetuation of the Earth's biological diversity. Opportunistic in its borrowing and application of knowledge, conservation biology had its roots within the established biological sciences and resource management disciplines but has continually incorporated insights from the empirical experience of resource managers, from the social sciences and humanities, and from diverse cultural sources. The Society for Conservation Biology (SCB) has represented the field's core constituency, while expanding that constituency in keeping with the field's integrative spirit. Conservation Biology has served as SCB's flagship publication, promoting research, dialog, debate, and application of the field's essential concepts. Over the last 20 years the field, SCB, and the journal have evolved to meet changing conservation needs, to explore gaps in our knowledge base, to incorporate new information from related fields, to build professional capacity, and to provide expanded opportunities for international participation. In turn, the field, SCB, and journal have prompted change in related fields, organizations, and publications. In its dedication to advancing the scientific foundations of biodiversity conservation and placing that science at the service of society in a world whose variety, wildness, and beauty we care for, conservation biology represents both a continuation and radical reconfiguration of the traditional relationship between science and conservation.  相似文献   

2.
Graduate education programs in conservation science generally focus on disciplinary training and discipline‐specific research skills. However, nonacademic conservation professionals often require an additional suite of skills. This discrepancy between academic training and professional needs can make it difficult for graduate students to identify the skills and experiences that will best prepare them for the conservation job market. We analyzed job advertisements for conservation‐science positions and interviewed conservation professionals with experience hiring early‐career conservation scientists to determine what skills employers of conservation professionals seek; whether the relative importance of skills varies by job sector (government, nonprofit, and private); and how graduate students interested in careers in conservation science might signal competency in key skills to potential employers. In job advertisements, disciplinary, interpersonal, and project‐management skills were in the top 5 skills mentioned across all job sectors. Employers’ needs for additional skills, like program leadership, conflict resolution and negotiation, and technical and information technology skills, varied across sectors. Our interview results demonstrated that some skills are best signaled to employers via experiences obtained outside thesis or dissertation work. Our findings suggest that graduate students who wish to be competitive in the conservation job market can benefit by gaining skills identified as important to the job sector in which they hope to work and should not necessarily expect to be competent in these skills simply by completing their chosen degree path. Guía para el Estudiante de Grado de las Habilidades Necesarias para Carreras de Conservación Académicas  相似文献   

3.
Abstract: That the greatest challenges in conservation are often not technical but rather economic or sociological has been expressed for at least the last 20 years. This raises the question of whether the training offered to tomorrow's conservation practitioners prepares them sufficiently to deal with the human dimensions of conservation. We analyzed 747 papers from seven wildlife management and conservation biology journals to determine the trends in this area of conservation management between 1985 and 1995. We found that over that time the emphasis stayed on single-species issues with a science focus, but there was a marked shift toward conservation biology issues, management-oriented research, and discussion of economic and social factors relevant to management. We also examined the handbooks of 11 Australian universities to analyze the content of 439 compulsory subjects in 12 degrees that we judged could produce wildlife managers. More than 68% of subjects were from a basic science or technology discipline, 16% from resource management, and only 13% from economics, humanities, communications, or planning. Thus, many of the skills required by contemporary wildlife managers must be learned in postgraduate training or on the job. Much of the undergraduate training syllabus, in Australia at least, does not reflect trends in the practice of wildlife management today and will not provide tomorrow's managers with the range of disciplinary understanding required. We were able, however, to identify three types of undergraduate training—ecological system managers, environmental managers, and human system managers—and we found that the curricula in human-system management contained increased emphasis on socioeconomic issues relevant to management.  相似文献   

4.
5.
Training Conservation Biologists in Human Interaction Skills   总被引:2,自引:0,他引:2  
Questionnaires were sent to 298 graduate programs in conservation biology and other areas of the biological and agricultural sciences and to 702 public and private organizations that employ, or might employ, conservation biologists. The focus of the questionnaires was on the need for training conservation biologists in human interaction skills (e.g., interpersonal communication, leadership, group decision making). Respondents were asked to indicate the current availability of such training at their institutions or organizations. Questionnaires were returned by 28.5% of the graduate programs and 21.1% of the conservation organizations. A majority of both groups of respondents indicated a high need for training in the following seven areas: written and oral communication; explaining science and values of biodiversity to the lay public; group decision making; interpersonal skills; group planning; leadership; and advocacy. Despite the high level of perceived training need, relatively few academic institutions and even fewer conservation organizations offer or require courses in human interaction skills (with the exceptions of written and oral communication and foreign languages). Sixty-four percent of the graduate faculty respondents and 78% of the employer organization respondents indicated that human interaction skills are equally important or more important to the work of conservation biologists than science knowledge and skill. We suggest that follow-up research should be conducted to delineate further the need for human interaction skills training and to assess the relationship between specific human interactions skills and conservation outcomes. We also recommend that a curriculum on human interaction should be designed and developed for conservation biologists, perhaps through a cooperative effort of interested faculty and employers facilitated by the Society for Conservation Biology and conservation organizations.  相似文献   

6.
Conservation issues are often complicated by sociopolitical controversies that reflect competing philosophies and values regarding natural systems, animals, and people. Effective conservation outcomes require managers to engage myriad influences (social, cultural, political, and economic, as well as ecological). The contribution of conservation scientists who generate the information on which solutions rely is constrained if they are unable to acknowledge how personal values and disciplinary paradigms influence their research and conclusions. Conservation challenges involving controversial species provide an opportunity to reflect on the paradigms and value systems that underpin the discipline and practice of conservation science. Recent analyses highlight the ongoing reliance on normative values in conservation. We frame our discussion around controversies over feral horses (Equus ferus caballus) in the Canadian West and New Zealand and suggest that a lack of transparency and reflexivity regarding normative values continues to prevent conservation practitioners from finding resilient conservation solutions. We suggest that growing scrutiny and backlash to many normative conservation objectives necessitates formal reflexivity methods in conservation biology research, similar to those required of researchers in social science disciplines. Moreover, given that much conservation research and action continues to prioritize Western normative values regarding nature and conservation, we suggest that adopting reflexive methods more broadly is an important step toward more socially just research and practice. Formalizing such methods and requiring reflexivity in research will not only encourage reflection on how personal and disciplinary value systems influence conservation work but could more effectively engage people with diverse perspectives and values in conservation and encourage more novel and resilient conservation outcomes, particularly when dealing with controversial species.  相似文献   

7.
Abstract:  To be relevant to societal interests and needs, conservation science must explicitly lend itself to solving real-world problems. Failure to evaluate under field conditions how a new technology or method performs or the cost of its implementation can prevent its acceptance by end users. Demonstration, defined here as the translation of scientific understanding into metrics of performance and cost of implementation under real-world conditions, is a logical step in the challenging progression from fundamental research to application. Demonstration reduces scientific uncertainty and validates the hypothesis that a management approach is both effective and financially sustainable. Much like adaptive management, demonstration enables researchers and resource managers to avoid trial-and-error approaches and instead conduct unbiased assessment of management interventions. The participation of end users and regulators in the development and execution of demonstration projects ensures that performance measures are credible and increases the probability that successful innovations will be adopted. Four actions might better connect science to the needs of resource managers via demonstration. First, we recommend that demonstration be conducted as a formal process that documents successes and failures. Second, demonstration should be budgeted as an integral component of government agencies' science programs and executed as a partnership between researchers and managers. Third, public and private funders should increase the opportunities and incentives for academics to engage in demonstration. Fourth, social influences on adoption of new technologies and methods should be further explored. When end users can evaluate explicitly whether a new approach is likely to achieve management objectives, save money, and reduce risk under uncertainty, the professional community successfully has bridged a chasm between research and application .  相似文献   

8.
Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual‐based learning, stresses collaborative and generative insight making and is well‐suited for adaptive management. Adaptive‐management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real‐time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case‐study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy‐in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning.  相似文献   

9.
The successful conservation of biodiversity depends in part upon an accurate assessment of the diversity to be preserved. This assessment is in the domain of systematics, taxonomy, and general comparative biology. Specimens play a central role in this science, and research collections thus represent the touchstone of biodiversity. The massive job of describing and understanding avian diversity is far from complete, yet the specimen basis for much-needed work is not being added to our collections; current holdings are inadequate. The dwindling influx of specimens is due primarily to opposition to collecting, which is fueled by (1) focusing conservation at the level of the individual; (2) unfamiliarity with population biology; (3) misunderstanding of scientific research; (4) typological thinking; and (5) misplaced morality. Specimen-based avian research has a long and scientifically strong history, and the benefits of this research have been extensive. Our research collections must serve as functional biological libraries. The majority of avian populations can easily withstand the relatively tiny levels of collecting required to keep this science vigorous. Insofar as avian conservation necessarily includes the preservation of a myriad of species comprising the ecosystems upon which birds rely, this problem has broad implications for the conservation of biodiversity.  相似文献   

10.
There are many barriers to using science to inform conservation policy and practice. Conservation scientists wishing to produce management‐relevant science must balance this goal with the imperative of demonstrating novelty and rigor in their science. Decision makers seeking to make evidence‐based decisions must balance a desire for knowledge with the need to act despite uncertainty. Generating science that will effectively inform management decisions requires that the production of information (the components of knowledge) be salient (relevant and timely), credible (authoritative, believable, and trusted), and legitimate (developed via a process that considers the values and perspectives of all relevant actors) in the eyes of both researchers and decision makers. We perceive 3 key challenges for those hoping to generate conservation science that achieves all 3 of these information characteristics. First, scientific and management audiences can have contrasting perceptions about the salience of research. Second, the pursuit of scientific credibility can come at the cost of salience and legitimacy in the eyes of decision makers, and, third, different actors can have conflicting views about what constitutes legitimate information. We highlight 4 institutional frameworks that can facilitate science that will inform management: boundary organizations (environmental organizations that span the boundary between science and management), research scientists embedded in resource management agencies, formal links between decision makers and scientists at research‐focused institutions, and training programs for conservation professionals. Although these are not the only approaches to generating boundary‐spanning science, nor are they mutually exclusive, they provide mechanisms for promoting communication, translation, and mediation across the knowledge–action boundary. We believe that despite the challenges, conservation science should strive to be a boundary science, which both advances scientific understanding and contributes to decision making. Logrando que la Ciencia de la Conservación Trasponga la Frontera Conocimiento‐Acción  相似文献   

11.
The high demand for conservation work is creating a need for conservation‐focused training of scientists. Although many people with postsecondary degrees in biology are finding careers outside academia, many programs and mentors continue to prepare students to follow‐in‐the‐footsteps of their professors. Unfortunately, information regarding how to prepare for today's conservation‐based job market is limited in detail and scope. This problem is complicated by the differing needs of conservation organizations in both economically developed and developing regions worldwide. To help scientists identify the tools needed for conservation positions worldwide, we reviewed the current global conservation job market and identified skills required for success in careers in academia, government, nonprofit, and for‐profit organizations. We also interviewed conservation professionals across all conservation sectors. Positions in nonprofit organizations were the most abundant, whereas academic jobs were only 10% of the current job market. The most common skills required across sectors were a strong disciplinary background, followed by analytical and technical skills. Academic positions differed the most from other types of positions in that they emphasized teaching as a top skill. Nonacademic jobs emphasized the need for excellent written and oral communication, as well as project‐management experience. Furthermore, we found distinct differences across job locations. Positions in developing countries emphasized language and interpersonal skills, whereas positions in countries with advanced economies focused on publication history and technical skills. Our results were corroborated by the conservation professionals we interviewed. Based on our results, we compiled a nondefinitive list of conservation‐based training programs that are likely to provide training for the current job market. Using the results of this study, scientists may be better able to tailor their training to maximize success in the conservation job market. Similarly, institutions can apply this information to create educational programs that produce graduates primed for long‐term success.  相似文献   

12.
Abstract:  The general context of conservation in the tropics—in the Amazon basin and elsewhere—is stagnant or declining funding and rapidly growing threat levels. For conservation programs this makes strategic deployment of limited conservation resources all the more important. International conservation organizations active in the tropics increasingly define themselves as science driven and expend considerable resources on science-based activities such as ecoregional analysis, field research, and monitoring of ecological variables. I argue that an overemphasis on science has generated a series of unintended but serious problems for conservation in the tropics. Spending on monitoring and ecoregional analysis has effectively starved protection and threat analysis of resources. A decoupling of biology from serious cost-benefit analysis has led to the privileging of small-scale and local analyses, rather than the systemic analyses essential for the strategic allocation of scarce conservation resources. Successful conservation in the tropics depends on the crossing of biogeography with sophisticated threat analysis to identify priority geographies for protection. This should be combined with much more systematic engagement with the principal drivers of tropical deforestation, especially agribusiness. Caution and a sense of proportion are required when balancing the financial demands of science and those of protection. I suggest that conservation organizations should cooperate far more in assembling and analyzing information on conservation spending and on threat levels and biogeography at the continental, national, and regional levels. Site selection should follow rather than precede this kind of strategic analysis, and sites should be considered elements of a network rather than stand-alone projects. More attention should be paid to market-driven conservation through techniques such as certification and responsible supply-chain management.  相似文献   

13.
Abstract: Integrating knowledge from across the natural and social sciences is necessary to effectively address societal tradeoffs between human use of biological diversity and its preservation. Collaborative processes can change the ways decision makers think about scientific evidence, enhance levels of mutual trust and credibility, and advance the conservation policy discourse. Canada has responsibility for a large fraction of some major ecosystems, such as boreal forests, Arctic tundra, wetlands, and temperate and Arctic oceans. Stressors to biological diversity within these ecosystems arise from activities of the country's resource‐based economy, as well as external drivers of environmental change. Effective management is complicated by incongruence between ecological and political boundaries and conflicting perspectives on social and economic goals. Many knowledge gaps about stressors and their management might be reduced through targeted, timely research. We identify 40 questions that, if addressed or answered, would advance research that has a high probability of supporting development of effective policies and management strategies for species, ecosystems, and ecological processes in Canada. A total of 396 candidate questions drawn from natural and social science disciplines were contributed by individuals with diverse organizational affiliations. These were collaboratively winnowed to 40 by our team of collaborators. The questions emphasize understanding ecosystems, the effects and mitigation of climate change, coordinating governance and management efforts across multiple jurisdictions, and examining relations between conservation policy and the social and economic well‐being of Aboriginal peoples. The questions we identified provide potential links between evidence from the conservation sciences and formulation of policies for conservation and resource management. Our collaborative process of communication and engagement between scientists and decision makers for generating and prioritizing research questions at a national level could be a model for similar efforts beyond Canada.  相似文献   

14.
Exotic Organisms: A Dilemma for Conservation Biology   总被引:6,自引:0,他引:6  
Abstract: Human-induced problems in resource conservation fall into three categories: (1) inappropriate resource use, (2) pollution, and (3) exotic organisms. Problems of resource use and pollution are correctable; exotic organisms are frequently permanent and may be the most pervasive influence affecting biodiversity in many systems, particularly on oceanic islands. Invasive exotic organisms often have effects far in excess of what might be predicted by equilibrium island biogeographic theory; a single exotic species may cause numerous extinctions in addition to altering the physical environment. Exotic organisms frequently cause environmental crises. In such crises, calls for more research are commonplace, but research results may be an unaffordable luxury, providing information only for the eulogy. Programs to eradicate exotic organisms provide an opportunity to combine good science and good conservation into functioning conservation biology.  相似文献   

15.
Ecological Sustainability as a Conservation Concept   总被引:3,自引:0,他引:3  
Neither the classic resource management concept of maximum sustainable yield nor the concept of sustainable development are useful to contemporary, nonanthropocentric, ecologically informed conservation biology. As an alternative, we advance an ecological definition of sustainability that is in better accord with biological conservation: meeting human needs without compromising the health of ecosystems. In addition to familiar benefit-cost constraints on human economic activity, we urge adding ecologic constraints. Projects are not choice-worthy if they compromise the health of the ecosystems in which human economic systems are embedded. Sustainability, so defined, is proffered as an approach to conservation that would complement wildlands preservation for ecological integrity, not substitute for wildlands preservation.  相似文献   

16.
Abstract: The Undergraduate Interagency Resource Teams at the White Mountain Research Station of the University of California were created in 1994 to support resource-agency mandates and academic research objectives by providing qualified students who can learn, apply, and improve research and agency monitoring protocols. Drawing from documented elements of other successful internship programs, we identified four basic components that we believe may enhance the potential success of the interns: (1) self-directed learning methodologies, (2) multidisciplinary approaches to science, (3) reflection on and documentation of intern learning, and (4) principles of a positive work environment, including teamwork, conflict resolution, and effective communication. During a 10-week summer session, the Interagency Resource Teams expose approximately 17 students to the professional worlds of natural resource agencies and research scientists. In this environment, we have also observed that the internship program not only exposes students to resource management careers but may also help bridge the gap between resource agency specialists and academic researchers.  相似文献   

17.
Economics and Land-Use Change in Prioritizing Private Land Conservation   总被引:5,自引:0,他引:5  
Abstract:  Incentive-based strategies such as conservation easements and short-term management agreements are popular tools for conserving biodiversity on private lands. Billions of dollars are spent by government and private conservation organizations to support land conservation. Although much of conservation biology focuses on reserve design, these methods are often ineffective at optimizing the protection of biological benefits for conservation programs. Our review of the recent literature on protected-area planning identifies some of the reasons why. We analyzed the site-selection process according to three important components: biological benefits, land costs, and likelihood of land-use change. We compared our benefit-loss-cost targeting approach with more conventional strategies that omit or inadequately address either land costs or likelihood of land-use change. Our proposed strategy aims to minimize the expected loss in biological benefit due to future land-use conversion while considering the full or partial costs of land acquisition. The implicit positive correlation between the likelihood of land-use conversion and cost of land protection means high-vulnerability sites with suitable land quality are typically more expensive than low-vulnerability sites with poor land quality. Therefore, land-use change and land costs need to be addressed jointly to improve spatial targeting strategies for land conservation. This approach can be extended effectively to land trusts and other institutions implementing conservation programs.  相似文献   

18.
For conservation science to effectively inform management, research must focus on creating the scientific knowledge required to solve conservation problems. We identified research questions that, if answered, would increase the effectiveness of conservation and natural resource management practice and policy in Oceania's small‐island developing states. We asked conservation professionals from academia, governmental, and nongovernmental organizations across the region to propose such questions and then identify which were of high priority in an online survey. We compared the high‐priority questions with research questions identified globally and for other regions. Of 270 questions proposed by respondents, 38 were considered high priority, including: What are the highest priority areas for conservation in the face of increasing resource demand and climate change? How should marine protected areas be networked to account for connectivity and climate change? What are the most effective fisheries management policies that contribute to sustainable coral reef fisheries? High‐priority questions related to the particular challenges of undertaking conservation on small‐island developing states and the need for a research agenda that is responsive to the sociocultural context of Oceania. Research priorities for Oceania relative to elsewhere were broadly similar but differed in specific issues relevant to particular conservation contexts. These differences emphasize the importance of involving local practitioners in the identification of research priorities. Priorities were reasonably well aligned among sectoral groups. Only a few questions were widely considered answered, which may indicate a smaller‐than‐expected knowledge‐action gap. We believe these questions can be used to strengthen research collaborations between scientists and practitioners working to further conservation and natural resource management in this region.  相似文献   

19.
Abstract:  Strict protectionism, resource extraction, protected-area community outreach, ecotourism, an integrated conservation and development program, comanagement schemes, and citizen-science initiatives are all being used to help conserve the remote Katavi-Rukwa ecosystem in western Tanzania. Biological and social research show that protectionism is successful in the conservation of large mammals but fails to capture diverse species communities; extractivism is appropriate for some resources but not for others; protected-area outreach can be effective for some communities; and devolved control over wildlife, in conjunction with ecotourism and citizen science, has considerable potential in the area. The long-term nature of the research provides the necessary time frame to evaluate outcomes of different conservation strategies, uncovers dynamics within communities that affect attitudes and responses to conservation initiatives, provides impartial recommendations because changing research personnel offers different viewpoints, and, probably most importantly, enhances trust among stakeholders. Currently, there are limited institutional mechanisms for ensuring the input of biological and social science in shaping conservation practice in Tanzania, and long-term research can help informally bridge the gap  相似文献   

20.
We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade‐offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号