首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Central-place foraging theory has been unable to explain the load selection behavior of leaf-cutting ants (Atta spp., Attini: Formicidae). We suggest that this is due to incomplete consideration of the sequence of behaviors involved in resource acquisition by these ants. Unlike most central-place foragers, leaf-cutting ants do not return to their nests with food. Instead, the leaf fragments they gather must be processed within the nest to convert them to substrate for fungal gardens. We have shown previously that leaf fragment size affects the rate of distribution and processing of leaf tissue inside laboratory nests of Atta colombica. Including these tasks in the calculation of foraging rate may help explain load selection and other features of central-place foraging by Atta colonies. Here we develop a mathematical model of the complete sequence of external and internal tasks that lead to addition of substrate to fungal gardens. Using realistic parameter values, the leaf fragment sizes predicted to maximize a colony's rate of foraging in this broad sense correspond well with the mean fragment sizes actually collected by Atta colonies in the field. The optimal fragment size for global performance in the model is below the size that would maximize the delivery rate by above-ground foragers. The globally optimal size also fails to maximize the rate of either fragment distribution or fragment processing within the nest. Our results show how maximum collective performance of an ensemble of linked tasks may require behavior that would appear suboptimal in a piecemeal analysis of tasks.  相似文献   

2.
Cuticular hydrocarbon profiles are essential for nestmate recognition in insect societies, and quantitative variation in these recognition cues is both environmentally and genetically determined. Environmental cues are normally derived from food or nest material, but an exceptional situation may exist in the fungus-growing ants where the symbiotic fungus garden may be an independent source of recognition compounds. To investigate this hypothesis, we quantified the chemical profiles of the fungal symbionts of 18 sympatric colonies of Acromyrmex echinatior and Acromyrmex octospinosus and evaluated the quantitative variation of the 47 compounds in a multivariate analysis. Colony-specific chemical profiles of fungal symbionts were highly distinct and significantly different between the two ant species. We also estimated the relative genetic distances between the fungal symbionts using amplified fragment length polymorphism (AFLP) and correlated these with the overall (Mahalanobis) chemical distances between the colony-specific profiles. Despite the standardized laboratory conditions, the correlations were generally weak, but a statistically significant portion of the total variation in chemical profiles could be explained by genetic differences between the fungal symbionts. However, there was no significant effect of ant species in partial analyses because genetic differences between symbionts tend to coincide with being reared by different ant species. However, compound groups differed significantly with amides, aldehydes, and methyl esters contributing to the correlations, but acetates, alkanes, and formates being unrelated to genetic variation among symbionts. We show experimentally that workers that are previously exposed to and fed with the fungal symbiont of another colony are met with less aggression when they are later introduced into that colony. It appears, therefore, that fungus gardens are an independent and significant source of chemical compounds, potentially contributing a richer and more abundant blend of recognition cues to the colony “gestalt” than the innate chemical profile of the ants alone. Freddie-Jeanne Richard and Michael Poulsen contributed equally to this work.  相似文献   

3.
Like organisms, cohesive social groups such as insect colonies grow from a few individuals to large and complex integrated systems. Growth is driven by the interplay between intrinsic growth rates and environmental factors, particularly nutritional input. Ecologically inspired population growth models assume that this relationship remains constant until maturity, but more recent models suggest that it should be less stable at small colony sizes. To test this empirically, we monitored worker population growth and fungal development in the desert leafcutter ant, Acromyrmex versicolor, over the first 6 months of colony development. As a multitrophic, symbiotic system, leafcutter colonies must balance efforts to manage both fungus production and the growth of the ants consuming it. Both ants and fungus populations grew exponentially, but the shape of this relationship transitioned at a size threshold of 89?±?9 workers. Above this size, colony mortality plummeted and colonies shifted from hypometric to hypermetric growth, with a distinct stabilization of the relationship between the worker population and fungus. Our findings suggest that developing colonies undergo key changes in organizational structure and stability as they grow, with a resulting positive transition in efficiency and robustness.  相似文献   

4.
Little AE  Currie CR 《Ecology》2008,89(5):1216-1222
Multiplayer symbioses are common in nature, but our understanding of the ecological dynamics occurring in complex symbioses is limited. The tripartite mutualism between fungus-growing ants, their fungal cultivars, and antibiotic-producing bacteria exemplifies symbiotic complexity. Here we reveal how black yeasts, newly described symbionts of the ant-microbe system, compromise the efficiency of bacteria-derived antibiotic defense in fungus-growing ants. We found that symbiotic black yeasts acquire nutrients from the ants' bacterial mutualist, and suppress bacterial growth. Experimental manipulation of ant colonies and their symbionts shows that ants infected with black yeasts are significantly less effective at defending their fungus garden from Escovopsis, a prevalent and specialized pathogen. The reduction of mutualistic bacterial biomass on ants, likely caused by black yeast symbionts, apparently reduces the quantity of antibiotics available to inhibit the garden pathogen. Success of the ant-fungal mutualism is directly dependent on fungus garden health. Thus our finding that black yeasts compromise the ants' ability to deal with the garden parasite indicates that it is an integral component of the symbiosis. This is further evidence that a full understanding of symbiotic associations requires examining the direct and indirect interactions of symbionts in their ecological community context.  相似文献   

5.
Queen mating frequency of the facultatively polygynous ant Acromyrmex echinatior was investigated by analysing genetic variation at an (AG)n repeat microsatellite locus in workers and sexuals of 20 colonies from a single Panamanian population. Thirteen colonies were found to be monogynous, 5 colonies contained multiple queens, whereas the queen number of 2 colonies remained unresolved. Microsatellite genotypes indicated that 12 out of 13 queens were inseminated by multiple males (polyandry). The mean queen mating frequency was 2.53 and the mean genetically effective paternity frequency was 2.23. These values range among the highest found in ants, and the results are in keeping with the high mating frequencies reported for other species of leafcutter ants. Consistent skew in the proportional representation of different patrilines within colonies was found, and this remained constant in two consecutive samples of offspring. Dissections showed that all examined queens from multiple-queen colonies were mated egg-layers. The mean relatedness value among nestmate workers in polygynous colonies was lower than that for monogynous colonies. No diploid males were detected in a sample of 70 genotyped males. Worker production of males was detected in one queenless colony. We discuss our findings in relation to known patterns of multiple maternity and paternity in other eusocial Hymenoptera. Received: 2 September 1998 / Received in revised form: 3 February 1999 / Accepted: 7 February 1999  相似文献   

6.
This study investigated the effect of fertilisation and intercropping on the uptake of cadmium (Cd) by maize plants (Zea mays L. var. Guangtian-2). Maize was intercropped with soybean, peanut, chickpea, alfalfa, adzuki bean, garden pea, amaranth, Chinese mustard, and flowering Chinese cabbage. The results showed that most legumes substantially enhanced Cd uptake by maize under different fertiliser treatments. Cd accumulation in the leaf tissues of maize was increased by garden pea to 1.5 times the amount in the control (maize alone) with PK fertiliser. Maize intercropped with garden pea absorbed 1225 μg plant?1 Cd and transferred 925.9 μg plant?1 Cd to above ground tissues. Adzuki bean proved as the most valuable intercrop for enhancing Cd extraction from soil by maize owing to its relatively large maize bioconcentration factor of 5.9 and large transfer factor of 0.47 in the no fertiliser treatment. The results suggest that legumes caused a greater effect than non-legumes on Cd concentration in maize under different fertilisers; application of NPK fertiliser had positive effects on Cd level in intercropped maize.  相似文献   

7.
Fungus gardening ants make clear choices among fungal substrates (food for their fungus). It has been proposed, but never demonstrated, that these ants are collecting the best for their symbiotic fungus and the production of ant biomass (fitness). The goal of this study was to determine whether preferred substrates lead to higher fitness in the attine, Trachymyrmex septentrionalis. Preferences exhibited by foragers were established. Colonies were fed a single substrate or a mixture of substrates during the entire course of the experiment, which ended when sexual offspring appeared in the nest. The response variables were numbers and weights of ant offspring and the chitin content of fungus gardens. Preference was not strongly related to fitness. The preferred oak catkins produced the highest amounts of ant and fungal biomass, but the ants collected much more material than needed, which indicates that forager activity is decoupled from fitness. The preferred caterpillar feces were rejected shortly after the feedings began. The unpreferred oak leaves were just as effective at producing ant and fungal biomass as catkins. Leaves are possibly unpreferred because they are expensive to cut. The unpreferred huckleberry flowers were inferior but did not cause rejection behavior. The mixed diet was just as productive as catkins or leaves. This study indicates that foragers possess a default mechanism to prefer catkins and frass, which can be quickly changed if substrates are bad. In contrast, there does not appear to be a similar mechanism causing substrates to become preferred quickly.  相似文献   

8.
Division of labour is the hallmark of the success of many social animals. It may be especially important with regard to waste management because waste often contains pathogens or hazardous toxins and worker specialisation can reduce the number of group members exposed to it. Here we examine waste management in a fungus-farming, leaf-cutting ant, Acromyrmex echinatior, in which waste management is necessary to protect their vulnerable fungal crop. By marking ants with task-specific paint colours, we found clear division of labour between workers that engage in waste management and those that forage, at least during the fine timescale of the 3-day marking period. This division of labour was influenced by both age and size, with waste management workers tending to be smaller and younger than foragers. The role of preventing contaminated ants from entering the colony was fulfilled mainly by medium-sized workers. When the level of waste was experimentally increased, most of the ants that responded to remove the waste were workers previously engaged in tasks inside the nest rather than external waste workers or foragers. These responding workers tended to be young and medium-sized. Surprisingly, the responding ants were subsequently able to revert back to working within the fungus garden, but the probability of them doing so depended on their age and the length of time they were exposed to waste. The results demonstrate the importance of division of labour with regard to waste management in A. echinatior and show that this is adaptable to changing needs.  相似文献   

9.
We studied the organisation of garbage disposal and management in the leafcutting ant Atta cephalotes. The nest of this species has an internal garbage heap to which waste from the fungus garden is taken. The transport of waste from the fungus gardens to the garbage heaps is an example of task partitioning. Ninety-four percent of the garbage loads transferred from the fungus garden to the garbage heap were transferred indirectly via a caching site just outside the garbage heap entrance. A further 3% were transferred directly from a fungus garden worker to a garbage heap worker, again just outside the heap entrance. Only 3% were taken directly to the garbage heap without task partitioning. This is the first described example of task partitioning in insect societies for work other than foraging and the first example of task partitioning occurring entirely within the nest. Furthermore, there is a strong division of labour between the fungus garden workers and the garbage heap workers, with garbage workers hardly ever leaving the heap. Division of labour is reinforced by aggressive behaviour directed towards workers contaminated with garbage. This pattern of work organisation minimises contact between garbage heap workers, who are probably contaminated with pathogens hazardous to both the ants and their symbiotic fungus, and both fungus garden workers and the fungus garden. Task partitioning, division of labour (reinforced by aggression) and nest compartmentalisation act synergistically to isolate the hazardous garbage heap from the fungus gardens.  相似文献   

10.
In the Strait of Georgia and Howe Sound, British Columbia, colonies of individual cloud sponges, growing on rock (known as sponge gardens) receive resource subsidies from the high biodiversity of epifauna on adjacent rock habitats. Bioherms are reefs of glass sponges living on layers of dead sponges. In the same area as the sponge gardens, newly discovered bioherms in Howe Sound, BC (49.34.67 N, 123.16.26 W) at depths of 28- to 35-m are constructed exclusively by Aphrocallistes vastus, the cloud sponge. The sponge gardens had much higher taxon richness than the bioherms. The sponge garden had 106 species from 10 phyla, whereas the bioherm had only 15 species from 5 phyla. For recruiting juvenile rockfish (quillback, Sebastes maliger), the food subsidy of sponge gardens appears to be missing on bioherms of cloud sponge, where biodiversity is relatively low. While adult and subadult rockfishes (S. maliger, S. ruberrimus, S. proriger, and S. elongatus) were present on bioherms, no evidence for nursery recruitment of inshore rockfishes to bioherms was observed, whereas the sponge gardens supported high densities of newly recruited S. maliger, perhaps owing to the combination of both refuge and feeding opportunities. These results indicate that sponge gardens form a habitat for early stages of inshore S. maliger, whereas A. vastus bioherms are associated only with older juvenile and adult rockfishes.  相似文献   

11.
Kiers ET  van der Heijden MG 《Ecology》2006,87(7):1627-1636
The 450-million-year-old symbiosis between the majority of land plants and arbuscular mycorrhizal fungi (AMF) is one of the most ancient, abundant, and ecologically important mutualisms on Earth. Yet, the evolutionary stability of mycorrhizal associations is still poorly understood, as it follows none of the constraints thought to stabilize cooperation in other well-known mutualisms. The capacity of both host and symbiont to simultaneously interact with several partners introduces a unique dilemma; detecting and punishing those exploiting the mutualism becomes increasingly difficult if these individuals can continue to access resources from alternative sources. Here, we explore four hypotheses to explain evolutionary cooperation in the arbuscular mycorrhizal symbiosis: (1) pseudo-vertical transmission and spatial structuring of plant and fungal populations leading to local adaptation of partners; (2) luxury resource exchange in which plants trade surplus carbon for excess fungal nutrients; (3) partner choice allowing partners to associate with better cooperators; and (4) host and symbiont sanctions which actively reward good partners and punish less cooperative ones. We propose that mycorrhizal cooperation is promoted by an exchange of surplus resources between partners and enforced through sanctions by one or both partners. These mechanisms may allow plant and fungal genotypes to discriminate against individuals employing exploitative strategies, promoting patterns of partner choice. Together these selection pressures provide a framework for understanding the stabilization of mycorrhizal cooperation over evolutionary time.  相似文献   

12.
Seminal fluid enhances sperm viability in the leafcutter ant Atta colombica   总被引:1,自引:1,他引:0  
The seminal fluid that accompanies sperm in ejaculates has been shown or suggested to affect sperm competition and paternity success of insects by preventing female remating, inducing oviposition, and forming mating plugs. In Atta leafcutter ants, queens have multiple mates but never remate later in life, although they may live and produce fertilized eggs for several decades. The mating biology and life history of these ants therefore suggests that the major function of seminal fluid is to maximize sperm viability during copulation, sperm transfer, and initial sperm storage. We tested this hypothesis by comparing the viability of testis sperm and ejaculated sperm (mixed with seminal fluid) and found a significant positive effect of seminal fluid on sperm viability. We further quantified this positive effect by adding accessory gland secretion (a major component of seminal fluid) in a dilution series, to show that minute quantities of accessory gland secretion achieve significant increases in sperm viability. Sperm stored by queens for 1 year benefited in a similar way from being exposed to accessory gland compounds after dissection in control saline solution. Our results provide the first empirical evidence that seminal fluid is important for the production of viable ejaculates and that the accessory glands of Atta males—despite their small size—are functional and produce a very potent secretion.  相似文献   

13.
Parasites represent one of the main threats to all organisms and are likely to be particularly significant for social animals because of the increased potential for intragroup transmission. Social animals must therefore have effective resistance mechanisms against parasites and one of the most important components of disease resistance in ants is thought to be the antibiotic-producing metapleural gland. This gland is ancestral in ants, but has been lost secondarily in a small number of species. It is unknown whether these evolutionary losses are due to a reduction in parasite pressure or the replacement of the gland’s function with other resistance mechanisms. Here we used the generalist entomopathogenic fungus Metarhizium to compare the disease resistance of a species of a weaver ant, Polyrhachis dives, which has lost the metapleural gland, with that of the well-studied leaf-cutting ant Acromyrmex echinatior and two other ant species, Myrmica ruginodis and Formica fusca, all of which have metapleural glands. The P. dives weaver ants had intermediate resistance when kept individually, and similar resistance to A. echinatior leaf-cutting ants when kept in groups, suggesting that the loss of the metapleural gland has not resulted in weaver ants having reduced disease resistance. P. dives weaver ants self-groomed at a significantly higher rate than the other ants examined and apparently use their venom for resistance, as they had reduced resistance when their venom gland was blocked and the venom was shown in vitro to prevent the germination of fungal spores. Unexpectedly, the leaf-cutting ant A. echinatior also had reduced resistance to Metarhizium when its venom gland was blocked. It therefore appears that the evolutionary loss of the metapleural gland does not result in reduced disease resistance in P. dives weaver ants, and that this at least in part may be due to the ants having antimicrobial venom and high self-grooming rates. The results therefore emphasise the importance of multiple, complementary mechanisms in the disease resistance of ant societies.  相似文献   

14.
 In French Guiana, parabiotic societies (natural mixed colonies) are frequently found in ant gardens. Crematogaster limata parabiotica (Myrmicinae), often associated with Camponotus femoratus (Formicinae), was found for the first time in parabiosis with ponerine ants: Pachycondyla goeldii and Odontomachus mayi. A detailed study of the relationships between Cr. l. parabiotica and O. mayi showed that each species is aggressive towards allospecific or conspecific individuals belonging to another colony, but tolerates allospecific individuals from the multi-species society. Studies of cuticular substances of the four ant species were made using gas chromatography. The results showed that each species, living alone or in parabiosis, possesses a specific chemical profile. Thus, the ants are able to recognise nestmate and non-nestmate individuals of the associated species, even though their cuticular profiles are different. The hypothesis that the nestmate allospecific profile is learned is suggested to explain this pattern of recognition. Received: 5 June 1996 / Accepted after revision: 17 October 1996  相似文献   

15.
Summary The larvae and pupae of the Australian lycaenid butterfly, Jalmenus evagoras associate mutualistically with ants in the genus Iridomyrmex. Four ant exclusion experiments in three field sites demonstrated that predation and parasitism of J. evagoras are so intense that individuals deprived of their attendant ants are unlikely to survive. Larvae and pupae of J. evagoras aggregate, and the mean number of attendant ants per individual increases with larval age and decreases with group size. Field observations showed that young larvae could gain more attendant ants per individual by joining the average size group of about 4 larvae than by foraging alone. Aggregation behaviour is influenced by ant attendance: young larvae and pupating fifth instars aggregated significantly more often on plants with ants than on plants where ants had been excluded. In return for tending and protecting the larvae, ants were rewarded by food secretions that can amount to as much as 409 mg dry biomass from a single host plant containing 62 larvae and pupae of J. evagoras over a 24 h period. Larval development in the laboratory lasted approximately a month, and larvae that were tended by ants developed almost 5 days faster than larvae that were not tended. However, tended individuals, particularly females, pupated at a significantly lower weight than their untended counterparts, and the adults that eclosed from these pupae were also lighter and smaller. On average, pupae that were tended by ants lost 25% more weight than untended pupae, and in contrast with larvae, they took longer to eclose than pupae that were not tended. These experimental results are discussed in terms of costs and benefits of association for both partners, and of aggregation for the lycaenids.  相似文献   

16.
In a field experiment, great tits Parus major foraged on a pair of artificial trees that were supplied with equal amounts of food. Wood ants Formica aquilonia were excluded from one tree, but foraged on the other. Great tits visited the tree without ants more frequently, and for longer periods of time, than the tree with ants. The time of foraging visits by tits in the tree with ants decreased as ant activity there increased. These results are the first to show that interference competition from ants can influence a bird’s choice of microhabitat in which to forage, as well as alter the time it spends foraging there. Received: 10 March 1995/Accepted after revision: 9 September 1995  相似文献   

17.
Summary We investigated the role of the iridoid glycoside, catalpol, as a deterrent to the predator,Camponotus floridanus. Four laboratory colonies of this ant were offered buckeye caterpillars (Junonia coenia: Nymphalidae) raised on diets with and without catalpol. The same colonies were offered sugar-water solutions containing varying concentrations of catalpol, in both no-choice and choice tests. Regardless of diet, buckeye caterpillars appeared to be morphologically protected from predation by the ants, possibly because of their large spines or tough cuticle. However, buckeyes raised on diets with catalpol had high concentrations of catalpol in their hemolymph; extracts of this high-catalpol hemolymph proved to be an effective deterrent to the ants. When starved ants were not given the choice of food items, they were more likely to consume sucrose solutions that contained 5 mg catalpol/ml or 10 mg catalpol/ml than they were to consume solutions with 20 mg catalpol/ml. When they were given a choice of sugar solution or a sugar solution containing catalpol, the ants avoided solutions with catalpol at any of these concentrations. Ant colony responses to catalpol in sucrose solutions varied considerably over time and among colonies.  相似文献   

18.
茄子苗对镉积累和耐性的品种间差异   总被引:1,自引:0,他引:1  
通过盆栽实验方法研究了13种茄子幼苗对镉(Cd)积累与耐性的品种间差异。结果表明,这些茄子幼苗根及地上部Cd含量均随土壤中外加Cd的量的增加而提高。品种间存在着显著差异(P<0.05),其中Cd含量最高品种根部和地上部的Cd含量分别为Cd含量最低品种的2.1、2.4倍(2mg·kg-1Cd处理组)和1.5、1.6倍(4mg·kg-1Cd处理组)。不同品种幼苗对Cd的富集系数均大于1,表现出较强的富集能力。但转运系数均小于1,Cd从根部向地上部转移能力较弱,大多数品种间差异不大。当Cd添加量为2mg·kg-1时,只有绿龙长茄地上部生物量显著下降(P<0.05)。当Cd添加量提高到4mg·kg-1时,6个品种地上部生物量显著下降(P<0.05),这些品种对Cd的耐性较弱。综合评价,辽茄三号对Cd积累的含量最低,富集系数和转移系数也较低,对Cd具有较强的耐性,具有Cd低积累特征。  相似文献   

19.
We investigated phylogeographic relationships among American Mercenaria taxa by assessing variation in a 444 nucleotide fragment of the mitochondrial 16S ribosomal gene in clams sampled from four representative sites in January to November 1994. Three of these sites were in the Gulf of Mexico, one was on the Atlantic coast in South Carolina. Direct sequencing of this amplified gene fragment in 85 individuals revealed 21 haplotypes. Phylogenetic analyses consistently resolved this variation into three well supported clades, and within-clade genetic divergence levels were markedly lower than among-clade values. One of the clades, A, was taxon-specific, in that it solely and exclusively contained specimens of M. mercenaria (Linnaeus, 1758) sampled in South Carolina. The other two clades, B and C, were the most divergent and both encompassed specimens of M. campechiensis (Gmelin, 1791) and of M. campechiensis texana (Dall, 1902), sampled from the three Gulf of Mexico sites. Clade B was found at high frequencies at all three Gulf sites, whereas Clade C occurred at low frequencies at two western Gulf sites. We interpret this pattern as resulting from the secondary contact and introgression of two allopatrically differentiated Mercenaria taxa in the western Gulf of Mexico. Clade C haplotypes may represent relict mitochondrial lineages from original Gulf Mercenaria spp. populations that predate massive mitochondrial introgression by M. campechiensis. We further propose that the M. campechiensis texana nuclear genome is a mosaic, heavily weighted toward M. campechiensis, but containing some relict alleles inherited from the precontact population, especially those governing shell characteristics, which may be adaptive in cohesive sediments of bays and estuaries in the northwestern Gulf of Mexico.  相似文献   

20.
Summary Individual seed harvester ants (Pogonomyrmex) have been shown to specialize on specific seed types. We examined possible mechanisms for seed specialization and tested whether fidelity to food type limits the foraging decisions of individual western harvester ants, Pogonomyrmex occidentalis. The seed selection regimes of individually marked ants foraging at piles of two seed types were described and related to differences in seed quality and colonial dietary history. Individual foraging choices were affected by multiple factors, including seed caloric rewards, the previous seed selected, and the dietary history of the colony. Individual seed choices generally converged on the most energetically profitable species, suggesting that foragers exhibit labile preference. However, for a portion of the foragers, seed specialization was also partially due to constancy, defined as a tendency to select seed species that were previously collected. When colonies were presented with one seed type for 1 h and then were offered a mix of that seed and a novel seed type, individuals showed a strong preference for the novel seeds. Such rapid changes in seed preference argue strongly that individual P. occidentalis ants are highly flexible in seed choice and that resource assessment by these ants is more complex than simple maximization of net energetic return.Offprint requests to: J.H. Fewell at the current address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号