首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural non–point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from $21,000 to $35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.  相似文献   

2.
ABSTRACT: Water quality and nonpoint source (NPS) pollution are important issues in many areas of the world, including the Inner Bluegrass Region of Kentucky where urban development is changing formerly rural watersheds into urban and mixed use watersheds. In watersheds where land use is mixed, the relative contributions of NPS pollution from rural and urban land uses can be difficult to separate. To better understand NPS pollution sources in mixed use watersheds, surface water samples were taken at three sites that varied in land use to examine the effect of land use on water quality. Within the group of three watersheds, one was predominately agriculture (Agricultural), one was predominately urban (Urban), and a third had relatively equal representation of both types of land uses (Mixed). Nitrogen (N), phosphorus (P), total suspended solids (TSS), turbidity, pH, temperature, and streamflow were measured for one year. Comparisons are made among watersheds for concentration and fluxes of water quality parameters. Nitrate and orthophosphate concentrations were found to be significantly higher in the Agricultural watershed. Total suspended solids, turbidity, temperature, and pH, were found to be generally higher in the Urban and Mixed watersheds. No differences were found for streamflow (per unit area), total phosphorus, and ammonium concentrations among watersheds. Fluxes of orthophosphate were greater in the Agricultural watershed that in the Urban watershed while fluxes of TSS were greater in the Mixed watershed when compared to the Agricultural watershed. Fluxes of nitrate, ammonium, and total phosphorus did not vary among watersheds. It is apparent from the data that Agricultural land uses are generally a greater source of nutrients than the Urban land uses while Urban land uses are generally a greater source of suspended sediment.  相似文献   

3.
A modeling system that couples a land-use-based export coefficient model, a stream nutrient transport equation, and Bayesian statistics was developed for stream nitrogen source apportionment. It divides a watershed into several sub-catchments, and then considers the major land-use categories as stream nitrogen sources in each sub-catchment. The runoff depth and stream water depth are considered as the major factors influencing delivery of nitrogen from land to downstream stream node within each sub-catchment. The nitrogen sources and delivery processes are lumped into several constant parameters that were calibrated using Bayesian statistics from commonly available stream monitoring and land-use datasets. This modeling system was successfully applied to total nitrogen (TN) pollution control scheme development for the ChangLe River watershed containing six sub-catchments and four land-use categories. The temporal (across months and years) and spatial (across sub-catchments and land-use categories) variability of nonpoint source (NPS) TN export to stream channels and delivery to the watershed outlet were assessed. After adjustment for in-stream TN retention, the time periods and watershed areas with disproportionately high-TN contributions to the stream were identified. Aimed at a target stream TN level of 2 mg L?1, a quantitative TN pollution control scheme was further developed to determine which sub-catchments, which land-use categories in a sub-catchment, which time periods, and how large of NPS TN export reduction were required. This modeling system provides a powerful tool for stream nitrogen source apportionment and pollution control scheme development at the watershed scale and has only limited data requirements.  相似文献   

4.
Continued improvements in spatial datasets and hydrological modeling algorithms within Geographic Information Systems (GISs) have enhanced opportunities for watershed analysis. With more detailed hydrology layers and watershed delineation techniques, we can now better represent and model landscape to water quality relationships. Two challenges in modeling these relationships are selecting the appropriate spatial scale of watersheds for the receiving stream segment, and handling the network or pass-through issues of connected watersheds. This paper addresses these two important issues for enhancing cumulative watershed capabilities in GIS. Our modeling framework focuses on the delineation of stream-segment-level watershed boundaries for 1:24 000 scale hydrology, in combination with a topological network model. The result is a spatially explicit, vector-based, spatially cumulative watershed modeling framework for quantifying watershed conditions to aid in restoration. We demonstrate the new insights available from this modeling framework in a cumulative mining index for the management of aquatic resources in a West Virginia watershed.  相似文献   

5.
Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R 2 = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.  相似文献   

6.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

7.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

8.
ABSTRACT: A significant portion of all pollutants entering surface waters (streams, lakes, estuaries, and wetlands) derives from non-point source (NPS) pollution and, in particular, agricultural activities. The first step in restoring a water resource is to focus on the primary water quality problem in the watershed. The most appropriate NPS control measures, which include best management practices (BMPs) and landscape features, such as wetlands and riparian areas, can then be selected and positioned to minimize or mitigate the identified pollutant(s). A computer-based decision sup. port and educational software system, WATERSHEDSS (WATER, Soil, and Hydro-Environmental Decision Support System), has been developed to aid managers in defining their water quality problems and selecting appropriate NPS control measures. The three primary objectives of WATERSHEDSS are (1) to transfer water quality and land treatment information to watershed managers in order to assist them with appropriate land management/land treatment decisions; (2) to assess NPS pollution in a watershed based on user-supplied information and decisions; and (3) to evaluate, through geographical information systems-assisted modeling, the water quality effects of alternative land treatment scenarios. WATERSHEDSS is available on the World Wide Web (Web) at http://h2osparc.wq.ncsu.edu .  相似文献   

9.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

10.
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale.  相似文献   

11.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

12.
The disposal of manure on agricultural land has caused water quality concerns in many rural watersheds, sometimes requiring state environmental agencies to conduct total maximum daily load (TMDL) assessments of stream nutrients, such as nitrogen (N) and phosphorus (P). A best management practice (BMP) has been developed in response to a TMDL that mandates a 50% reduction of annual P load to the North Bosque River (NBR) in central Texas. This BMP exports composted dairy manure P through turfgrass sod from the NBR watershed to urban watersheds. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The soil and water assessment tool (SWAT) was used to model a typical suburban watershed that would receive the sod grown with composted dairy manure to assess water quality changes due to this BMP. The SWAT model was calibrated to simulate historical flow and estimated sediment and nutrient loading to Mary's Creek near Fort Worth, Texas. The total P stream loading to Mary's Creek was lower when manure-grown sod was transplanted instead of sod grown with inorganic fertilizers. Flow, sediment and total N yield were the same for both cases at the watershed outlet. The SWAT simulations indicated that the turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.  相似文献   

13.
ABSTRACT: Non-point source pollution cuntinues to be an important environmental and water quality management problem. For the moat part, analysis of non-point source pollution in watersheds has depended on the use of distributed models to identify potential problem areas and to assess the effectiveness of alternative management practices. To effectively use these models for watershed water quality management, users depend on integrated geographic information systems (GIS)-based interfaces for input/output data management. However, existing interfaces are ad-hoc and the utility of GIS is limited to organization of input data and display of output data. A highly interactive water quality modeling interface that utilizes the functional components and analytical capability of GIS is highly desirable. This paper describes the tight coupling of the Agricultural Non-point Source (AGNPS) water quality model and ARC/INFO GIS software to provide an interactive hybrid modeling environment for evaluation of non-point source pollution in a watershed. The modeling environment is designed to generate AGNPS input parameters from user-specified GIS coverages, create AGNPS input data files, control AGNPS model simulations, and extract and organize AGNPS model output data for display. An example application involving the estimation of pesticide loading in a southern Iowa agricultural watershed demonstrates the capability of the modeling environment. Compared with traditional methods of watershed water quality modeling using the AGNPS model or other ad-hoc interfaces between a distributed model and GIS, the interactive modeling environment system is efficient and significantly reduces the task of watershed analysis using tightly coupled GIS databases and distributed models.  相似文献   

14.
ABSTRACT: Many water bodies within the United States are contaminated by non‐point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollutant that is of critical concern are pathogens derived from animal wastes, including humans. The potential presence of pathogens is identified by testing the water for fecal conform, a bacteria also associated with animal wastes. Water contaminated by animal wastes are most often associated with urban and agricultural areas, thus it is postulated that by utilizing land cover indicators, those water bodies that may be at risk of fecal coliform contamination may be identified. This study utilizes land cover information derived from the Multi‐Resolution Land Characterization (MRLC) project to analyze fecal coliform contamination in South Carolina. Also utilized are 14 digit hydro‐logic unit code (HUC) watersheds of the state, a digital elevation model, and test point data stating whether fecal coliform levels exceeded State Water Quality Standards. Proportions of the various land covers are identified within the individual watersheds and then analyzed using a logistic regression. The results reveal that watersheds with large proportions of urban land cover and agriculture on steep slopes had a very high probability of being impaired. (KEY TERMS: Geographic Information Systems; land use planning; nonpoint source pollution; statistical analysis; water quality; watershed management.)  相似文献   

15.
Nonpoint source (NPS) pollutants such as phosphorus, nitrogen, sediment, and pesticides are the foremost sources of water contamination in many of the water bodies in the Midwestern agricultural watersheds. This problem is expected to increase in the future with the increasing demand to provide corn as grain or stover for biofuel production. Best management practices (BMPs) have been proven to effectively reduce the NPS pollutant loads from agricultural areas. However, in a watershed with multiple farms and multiple BMPs feasible for implementation, it becomes a daunting task to choose a right combination of BMPs that provide maximum pollution reduction for least implementation costs. Multi-objective algorithms capable of searching from a large number of solutions are required to meet the given watershed management objectives. Genetic algorithms have been the most popular optimization algorithms for the BMP selection and placement. However, previous BMP optimization models did not study pesticide which is very commonly used in corn areas. Also, with corn stover being projected as a viable alternative for biofuel production there might be unintended consequences of the reduced residue in the corn fields on water quality. Therefore, there is a need to study the impact of different levels of residue management in combination with other BMPs at a watershed scale. In this research the following BMPs were selected for placement in the watershed: (a) residue management, (b) filter strips, (c) parallel terraces, (d) contour farming, and (e) tillage. We present a novel method of combing different NPS pollutants into a single objective function, which, along with the net costs, were used as the two objective functions during optimization. In this study we used BMP tool, a database that contains the pollution reduction and cost information of different BMPs under consideration which provides pollutant loads during optimization. The BMP optimization was performed using a NSGA-II based search method. The model was tested for the selection and placement of BMPs in Wildcat Creek Watershed, a corn dominated watershed located in northcentral Indiana, to reduce nitrogen, phosphorus, sediment, and pesticide losses from the watershed. The Pareto optimal fronts (plotted as spider plots) generated between the optimized objective functions can be used to make management decisions to achieve desired water quality goals with minimum BMP implementation and maintenance cost for the watershed. Also these solutions were geographically mapped to show the locations where various BMPs should be implemented. The solutions with larger pollution reduction consisted of buffer filter strips that lead to larger pollution reduction with greater costs compared to other alternatives.  相似文献   

16.
Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale.  相似文献   

17.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

18.
Ammonium nitrogen and total germanium are among the main pollutants in the wastewater discharged from the leather industry. The intake of high concentrations of ammonium nitrogen and/or total germanium harms human health and biological species, as is well documented in literature. This paper focuses on assessing the trends of ammonium nitrogen and total germanium concentrations through time in two watersheds (Aojiang and Oujiang) in the Wenzhou metropolitan area of Zhejiang Province and their relationships with the released wastewater using regression and correlation statistics. The paper also utilizes the integrated pollution index to evaluate water quality in the two watersheds. Preliminary results show that, from 1992 to 1998 in the Aojing watershed, the concentrations of ammonium nitrogen and total germanium increased 13 and 14 times, respectively, decreasing somewhat after 1998, while between 1992 and 1997 in the Oujiang watershed, the concentrations increased, then decreased after 1997. The concentrations of ammonium nitrogen and total germanium are positively related to the amount of released wastewater. The concentrations of ammonium nitrogen and total germanium exceeded water standards 12 and 3 times, respectively, in Pingyang county of the Aojiang watershed, 14 and 3.3 times in Lucheng District of the Oujiang watershed, and 14 and 3.8 times in the Ouhai Oujiang watershed, respectively. In Pingyang county of the Aojiang watershed, the water quality degraded from Type III in 1992 to over Type V in 2003, and in the Oujiang watershed, the water quality degraded from Type II to over Type IV in 1999, when they were compared with the water quality standards. The water quality slightly improved in 2003 for the Oujiang watershed. It appears that pollution did have a direct positive correlation with leather industry production in the Pingyang Aojing watershed, while there was a negative correlation between the two in the Oujiang watershed. In these two watersheds, the integrated pollution index did not appear to relate to population dynamics and agricultural production. This paper also discusses the current new methodologies and approaches adopted nationally and internationally to reduce the contaminants and purify the environment for maintaining a sustainable and healthier environment in Wenzhou.  相似文献   

19.
Agricultural nonpoint source pollution remains a persistent environmental problem, despite the large amount of money that has been spent on its abatement. At local scales, agricultural best management practices (BMPs) have been shown to be effective at reducing nutrient and sediment inputs to surface waters. However, these effects have rarely been found to act in concert to produce measurable, broad-scale improvements in water quality. We investigated potential causes for this failure through an effort to develop recommendations for the use of riparian buffers in addressing nonpoint source pollution in Wisconsin. We used frequency distributions of phosphorus pollution at two spatial scales (watershed and field), along with typical stream phosphorus (P) concentration variability, to simulate benefit/cost curves for four approaches to geographically allocating conservation effort. The approaches differ in two ways: (1) whether effort is aggregated within certain watersheds or distributed without regard to watershed boundaries (dispersed), and (2) whether effort is targeted toward the most highly P-polluting fields or is distributed randomly with regard to field-scale P pollution levels. In realistic implementation scenarios, the aggregated and targeted approach most efficiently improves water quality. For example, with effort on only 10% of a model landscape, 26% of the total P load is retained and 25% of watersheds significantly improve. Our results indicate that agricultural conservation can be more efficient if it accounts for the uneven spatial distribution of potential pollution sources and the cumulative aspects of environmental benefits.  相似文献   

20.
Subsurface tile‐drained agricultural fields are known to be important contributors to nitrate in surface water in the Midwest, but the effect of these fields on nitrate at the watershed scale is difficult to quantify. Data for 25 watersheds monitored by the Indiana Department of Environmental Management and located near a U.S. Geological Survey stream gage were used to investigate the relationship between flow‐weighted mean concentration (FWMC) of nitrate‐N and the subsurface tile‐drained area (DA) of the watershed. The tile DA was estimated from soil drainage class, land use, and slope. Nitrate loads from point sources were estimated based on reported flows of major permitted facilities with mean nitrate‐N concentrations from published sources. Linear regression models exhibited a statistically significant relationship between annual/monthly nonpoint source (NPS) nitrate‐N and DA percentage. The annual model explained 71% of the variation in FWMC of nitrate‐N. The annual and monthly models were tested in 10 additional watersheds, most with absolute errors within 1 mg/l in the predicted FWMC. These models can be used to estimate NPS nitrate for unmonitored watersheds in similar areas, especially for drained agricultural areas where model performance was strongest, and to predict the nitrate reduction when various tile drainage management techniques are employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号