首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The multiple-recapture technique can be used to study some aspects of the dynamics of large fish populations, if a part of the fishing fleet is considered as experimental fishing boats by appointing obserers to release tagged fish which are captured, while untagged fish captured are retained. The tagged and untagged populations are assumed to have different properties such as catchability and survival rates. The fish are sampled during a number of sampling surveys with equal duration and no intervening time intervals between them. It is assumed that fish suffer from mortalities during sampling surveys. The parameters of untagged populations can be estimated with the help of the readily estimated parameters of tagged fish (Rafail, 1972), the relationship between the parameters of tagged and untagged populations, and the numbers of untagged fish captured during the sampling surveys. The estimates are free from Types A and B tagging errors.  相似文献   

2.
In capture-recapture experiments, fish populations can be studied by two different sampling procedures. In both procedures, tagged fish are released on capture, but untagged fish are in one procedure released after tagging, in the second procedure they are retained. Using the two sampling techniques, Rafail (1971a,b) gave expressions for the estimation of an assumed constant (C) of proportionality between probabilities of capture of tagged to untagged fish which are simplified here to forms easier for calculation. The estimation of this constant (C) aids in estimation of abundance and mortality rates of untagged fish which are assumed to differ from those of tagged fish.  相似文献   

3.
A certain number of tagged fish is liberated and assumed to be distributed randomly among a natural fish population. The fish are subjected to a number of fishing experiments within relatively short periods, and lie between equal intervening periods of durationT. Untagged fish are retained, while tagged fish are released during the fishing experiments. Denoting the catchability of untagged fish byq u and that for tagged fish byq t , it is assumed that they are related by the equation “q u =cq t ” wherec is a constant. Denoting the survival rates of tagged fish and the effective fishing effort of commerical fisheries per unit time from the (k-1)th to thek th experiments by t S k andf k , respectively, it is assumed that they vary from period to period. Assuming that during thek th experiment, the number of untagged fish captured and the experimental fishing rate of tagged fish are denoted by u X k and t P k , respectively, then $$\begin{array}{*{20}c} {\frac{{(_u X_k )^2 }}{{[_u X_{(k - 1)} ][_u X_{(k + 1)} ]}} = \frac{{_t S_k }}{{_t S_{(k + 1)} }} \cdot \frac{{e^{ - (1 - c)q_t f_{(k + 1)} T} }}{{e^{ - (1 - c)q_t f_k T} }} \cdot } \\ {\frac{{1 - c_t P_{(k - 1)} }}{{1 - c_t P_k }} \cdot \frac{{(_t P_k )^2 }}{{[_t P_{(k - 1)} ][_t P_{(k + 1)} ]}}.} \\ \end{array}$$ The above equation containsc as a single unknown, while all other terms are supplied by the capture-recapture experiments, exceptf k andf (k+1) which may be obtained from fisheries statistics. A number of the above equations are obtained from several experiments and can be combined into a single equation to obtain an overall estimate forc which can be used to derive estimates for experimental fishing rates, abundance, and instantaneous natural and fishing mortality rates for natural fish populations. These estimates are free from type (A) tagging errors, and have the advantage of taking into consideration the probable different behaviour of tagged and untagged fish.  相似文献   

4.
A natural fish population is assumed to be subjected to a number of fishing experiments, during which the captured fish are released after tagging all untagged fish. Assuming that, in thek th sampling survey, the tagged and untagged fish are subjected toP tk andP uk fishing rates, andS tk andS uk survival rates, respectively, the population size can be estimated from an estimate ofP uk $$\begin{gathered} i.e., 1 - P_{uk} = \hfill \\ P_{tk \cdot } \frac{{S_t (k + 1)}}{{S_u (k + 1)}}\frac{\begin{gathered} Number of fish captured for the first time in \hfill \\ the (k + 1)^{th} survey plus fish belonging to this \hfill \\ group captured later \hfill \\ \end{gathered} }{\begin{gathered} Number of fish captured for the first time in \hfill \\ the k^{th} and captured again in the (k + 1)^{th} \hfill \\ \exp eriment plus fish belonging to this group \hfill \\ which are captured later \hfill \\ \end{gathered} } \hfill \\ \end{gathered}$$ All terms of the right hand side of the above equation are provided by capture-recapture experiments, except the survival rate of untagged fish which may be obtained by other information. This estimate of fishing rate of untagged fish is free from type (A) errors.  相似文献   

5.
A general model is developed to examine the patterns of the regional movement of tagged and released fish from mark-recapture experiments. It is a stochastic model that incorporates fishing mortality, natural mortality, fish movement, tag-shedding, and different rates of reporting. A likelihood function is constructed for estimating its parameters. We used this model to analyze data on the Pacific halibut from mark-recapture experiments conducted by the International Pacific Halibut Commission (IPHC), with a total of 36,058 releases from 1982 to 1986 and 5,826 recoveries from 1982 to 2000. We estimated their rates of movement among IPHC management areas, along with their instantaneous rates of natural and fishing mortalities. Our analysis revealed that fish movement was not significant among areas, with a resident probability of > 0.92. This lends support to the IPHC catch-at-age stock assessment model (which has no built-in movement components). The estimated instantaneous rate of natural mortality (0.198 year−1) lies between that assumed in all IPHC stock assessments before 1998 (0.20 year−1) and that from 1999 onwards (0.15 year−1). The estimates of the instantaneous rates of fishing mortality were consistent with those from the IPHC stock assessment model. Received: April 2003 / Revised: May 2005  相似文献   

6.
7.
Marine protected areas (MPA) produce a positive effect on fish populations, but this may be difficult to identify due to the high temporal variability of populations. Meta-analysis is an option for analysing data from different sources and sampling designs and it can address problems related to temporal and spatial variability in fish populations. We analysed fish abundance data from visual counts conducted in summer, from 1996 to 2002, in the MPA of Tabarca (Alicante, Spain). The results showed an overall positive effect of protection at the species and family levels. Overall abundance of fishes inside the reserve was, on average, 1.22 times higher than outside the reserve boundaries. Positive effect of protection was found for Boops boops, Diplodus annularis, Diplodus cervinus, Epinephelus marginatus, Epinephelus costae and Epinephelus aenus. Species of Labrids were not affected by protection, except for Thalassoma pavo and Symphodus ocellatus. Meta-analysis of temporal data allows evaluation of the protection MPA provide and is particularly useful when data sources have different experimental designs or sampling programs. The Tabarca MPA has benefited fish populations by increasing their abundance and we suggest that meta-analysis is a complementary tool for the management of MPAs.  相似文献   

8.
Nonterritorial Sebastes carnatus and S. chrysomelas existed, along with territorial individuals, at 3 tagging sites off southern California, USA, which were monitored for nearly 1 yr. To test the hypothesis that territoriality affected adult density in these species, territorial fish were removed and the subsequent utilization of vacated territories by other fish was monitored. Intrusion of other fish into vacated territories increased significantly in 90% of the removals. Other fish colonized both the feeding and sheltering parts of the vacated territories, indicating that the previous owners had successfully defended both parts of their territories. Many of the colonizers had already possessed territories; they expanded their territories or moved into presumably better havitat. Several previously-nonterritorial fish also moved into vacated areas, and at least some of them appeared to establish territories. These fish, then, had previously been capable of establishing territories, but were prevented from doing so by resident territory holders. Thus territoriality, rather than such other factors as predation or low recruitment, limited the number of territorial fish at each site. However, territorial fish did not inhibit the settlement of larval recruits, and the relative mortality rates of older territorial vs nonterritorial fish were not determined. Thus the question of whether territoriality was a major factor controlling total density remains unresolved.  相似文献   

9.
Variation in maternal reproductive traits was examined in field and reared populations of a geographically widespread reef fish, Pomacentrus coelestis (Pomacentridae), drawn from three different latitudes in Japan. Size-specific clutch size and clutch weight of wild fish increased with increasing latitude. Conversely, latitudinal variation in egg size of wild fish was obscure in same-season comparisons, probably because of the temperature effect on egg size. Common-environment experiments conducted at three temperatures showed that egg size decreased with increasing temperature in all populations. In the experiments, egg size, clutch size and clutch weight differed among populations at all temperatures, showing clear latitudinal clines. Females from low latitude spawned larger eggs at every experimental temperature. Size-specific clutch size and weight were greater in females from high latitude. Thus, the northern fish had a larger reproductive output per spawning and a larger number of smaller eggs in a spawning. Such interpopualtion variation in this fish is likely to be partially genetically based, although environmental effects on the variation cannot be entirely ruled out. This study provides evidence of potential latitudinal variation in the egg size and number in a coastal fish, by common-environment experiments. The close correspondence between latitudes and these maternal reproductive traits may be a consequence of local adaptation.  相似文献   

10.
The time periods from exhausion of the yolk to the age of irreversible starvation for Pacific herring Clupea harengus pallasi larvae were 8.5, 7.0 and 6.0 d at 6°, 8° and 10°C, respectively. These periods are within the range perviously measured for Atlantic herring larvae and other temperature zone fish species; they are long compared to the periods for tropical species. The variation in the length of this period is due almost entirely to temperature; the natural logarithm of the time period from fertilization to irreversible starvation is highly correlated (r=0.91) with the mean rearing temperature for 25 species of pelagic marine fish larvae. The rates of growth and mortality, measured for 26 experimental populations of Pacific herring larvae reared at 6°, 8° and 10°C and ten ages of delayed first feeding, decreased and increased, respectively with increasing age of first feeding and increasing temperature. These rates, adjusted for the effects of rearing conditions, were compared with the rates for natural populations of herring larvae. Growth is generally faster in the sea than in experimental enclosures. Two of the eleven estimates of natural mortality rate were high enough to indicate possible catastrophic mass starvation. This is consistent with Hjort's critical period concept of year class formation and it suggests that mass starvation occurs in 18 to 36% of the natural populations of first feeding herring larvae.  相似文献   

11.
Studies on the relative growth and production of the estuary grouper Epinephelus salmoides Maxwell were conducted in floating net-cages at 5 different stocking densities to determine the optimal level for stocking for commercial culture. The fish were stocked at densities of 15, 30, 60, 90 and 120 fish per m3, and reared for a period of 8 months. Results of the present study indicated that fish stocked at a density of 60 fish m-3 grew equally fast and showed a food conversion ratio, mortality rate, and condition factor comparable to those at the lower stocking densities of 15 and 30 fish m-3. At the end of the experiments, net-yield and production at this level of stocking density (60 fish m-3) were not significantly different from those at the higher stocking densities of 90 and 120 fish m-3, but showed increases of 86.7% over those at a stocking density of 30 fish m-3 and 294.2% over those at a stocking density of 15 fish m-3. The stocking density of 60 fish m-3 is therefore taken as the optimal stocking rate for economical production of estuary groupers in floating net-cages. The estuary groupers take 7 to 8 months to grow from 15–16 g to marketable size (>500 g) at a stocking density of 15 fish m-3, 8 to 9 months at a stocking density of 30 to 60 fish m-3 and 11 to 12 months at 90 to 120 fish m-3.  相似文献   

12.
The results of tagging studies conducted to determine the relationship between estuarine (juvenile) populations and adults at sea suggest that maturing Metapenaeus macleayi leave the estuaries and move along the coast in a northerly direction; the longest migration recorded was 120 km, but most prawns appear to disperse in shallow water (<40 m) within about 70 km of their juvenile habitat. There are approximately 60 estuarine populations of M. macleayi in south-east Australia; the geographical range of prawns emigrating from most estuarine populations overlap (at sea) to some degree with that of adjacent or nearby populations, but there is little or no overlap between any two of the 6 major populations. The mixing of individuals from a major population and from nearby smaller populations is negligible for the purposes of fisheries management, hence the prawns in each of the major estuarine populations and the adults in the coastal area north for about 70 km may be regarded as a unit stock.  相似文献   

13.
Instantaneous natural mortality rates and a nonparametric hunting mortality function are estimated from a multiple-year tagging experiment with arbitrary, time-dependent fishing or hunting mortality. Our theory allows animals to be tagged over a range of times in each year, and to take time to mix into the population. Animals are recovered by hunting or fishing, and death events from natural causes occur but are not observed. We combine a long-standing approach based on yearly totals, described by Brownie et al. (1985, Statistical Inference from Band Recovery Data: A Handbook, Second edition, United States Fish and Wildlife Service, Washington, Resource Publication, 156), with an exact-time-of-recovery approach originated by Hearn, Sandland and Hampton (1987, Journal du Conseil International pour l’Exploration de la Mer, 43, 107–117), who modeled times at liberty without regard to time of tagging. Our model allows for exact times of release and recovery, incomplete reporting of recoveries, and potential tag shedding. We apply our methods to data on the heavily exploited southern bluefin tuna (Thunnus maccoyii).  相似文献   

14.
Seagrass beds are often considered to be important nurseries for coral reef fish, yet the effectiveness of these nursery functions (refuge and food availability) at different juvenile stages is poorly understood. To understand how the demands of juvenile fish on seagrass nursery functions determines the timing of ontogenetic habitat shifts from seagrass beds to coral reefs, we conducted visual transect survey and field tethering and caging experiments on three different sizes of the coral reef fish Pacific yellowtail emperor (Lethrinus atkinsoni) during its juvenile tenure in seagrass beds at Ishigaki Island, southern Japan. The study showed that although the number of individual L. atkinsoni juveniles decreased by >90 % during their stay in the seagrass nursery, the shelter and/or food availability functions of the nursery, at least for a juvenile size of approximately 5 cm total length (TL), provided the best survival and growth option. The timing of ontogenetic migration to coral reefs of larger fish (>8 cm TL) was attributed to foraging efficiency for larger food items in different habitats. Overall, the function of the seagrass bed nursery changed with juvenile body size, with marginally higher survival and significantly greater growth rates during early juvenile stages in seagrass beds compared to coral reefs. This would contribute to the enhancement in the number of individuals eventually recruited to adult populations.  相似文献   

15.
There is increasing evidence that populations may not be well adapted to their local environments, and as a result, recent interest has focused on understanding factors that constrain adaptive evolution. This study presents data suggesting gene flow may constrain the ability of larvae of the streamside salamander Ambystoma barbouri to avoid predation by fish via escape behavior and life history tactics. Streamside salamander larvae face conflicting selection pressures in different streams. Some streams are ephemeral, where larvae should be active to feed, grow, and reach metamorphosis before stream drying. Other streams contain predatory fish, where larvae should be generally inactive to avoid predation. Previous work has shown that streamside salamander larvae exhibit ineffective antipredator behavior by having inappropriately high activity levels with fish, resulting in high predation in laboratory and field experiments. This study investigated the possibility that gene flow from larvae in ephemeral habitats may reduce the escape performance of larvae from populations with fish and alter their life history characteristics to increase their susceptibility to fish predation. I assayed escape behavior (speed, acceleration, and duration of escape) and life history characteristics (hatching date, size, stage) associated with predator avoidance among laboratory-reared larvae from four populations. As predicted, two populations (one with fish and the other fishless and ephemeral) connected by gene flow were not significantly different in almost all assays. In contrast, larvae from an isolated population with fish had significantly stronger escape behaviors and delayed hatching than both an isolated population that lacked a history of fish co-occurrence and the population with fish but gene flow from a fishless population. These results support theory suggesting that gene flow can constrain adaptive evolution. Received: 22 February 1999 / Received in revised form: 4 April 1999 / Accepted: 26 April 1999  相似文献   

16.
Elucidating the causes of post-recruitment mortality is a vital step toward understanding the population dynamics of coral reef fishes. Predation is often considered to be the primary proximate cause of mortality. It has, however, proven difficult to discern the relative contributions of predation and other processes, such as competition for food, shelter, or mates, to patterns of mortality. To determine which other processes might be important drivers of mortality patterns, factors related to mortality in the clown anemonefish Amphiprion percula (Lacepède, 1802) were examined. Patterns of mortality will not be driven by predation in A. percula, because these fish are well protected from predators by their close association with sea anemones. Mortality rates were based on the disappearance of known individuals from a population of 201, in 57 groups, during a 1-year field study (in 1997), in Madang Lagoon, Papua New Guinea. Mortality rate of A. percula was low (14% per annum) compared to other coral reef fish, probably due to the protection from predators afforded by the anemone. Six factors (reef, depth, anemone diameter, number of individuals, density, and standard length) showed no association with the probability of mortality (P>0.05). Rank was the only factor associated with the probability of mortality (P<0.03); low-rank individuals (ranks 4–6) suffered a higher mortality rate than high-rank individuals (ranks 1–3) (P<0.01). The most likely explanation for this pattern was that competition for rank, amongst individuals within an anemone, resulted in some individuals evicting their subordinates. Individuals probably competed for rank because it conferred access to reproduction, and not because it conferred access to food or shelter. Such competition for reproduction will be intense whenever some individuals obtain a greater share of reproduction than others do, and it may be an important process influencing the dynamics of coral reef fish populations.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Communicated by J.P. Grassle, New Brunswick  相似文献   

17.
The analysis of genotypic shifts in field-exposed populations has been proposed as a tool for monitoring the environmental impacts of contaminants. Previous laboratory experiments showed the occurrence of genotypic shifts induced by copper exposure in samples of Hediste diversicolor from the Pialassa estuary (North Adriatic Sea, Italy). In order to test if genotype-tolerance responses observed were consistent at larger spatial scales, populations of H. diversicolor were sampled in three haphazardly chosen estuaries along the Italian coast (Comacchio, Pialassa, Serchio) and exposed to 0.48 mg l−1 Cu2+ under laboratory conditions. Survival analysis procedures were used to test for possible relationships between time-to-death and genotypes at three allozyme loci (ALD, FH, PGI). Genotype-tolerance responses observed at locus ALD were consistent among populations up to 2500 km distant, with genotype ALD 102/102 associated with the shortest survival times. Comparisons with previous laboratory experiments showed that responses to copper stress at locus ALD were also consistent in time, with genotypes ALD 102/102 and ALD 100/102 associated with higher 96 h mortality ratios. Results suggested the occurrence of stable relationships between genotypes at locus ALD and tolerance responses of H. diversicolor to copper stress. Conversely, genotype-tolerance responses at loci PGI and FH were not consistent either in space (among populations from the three estuaries) or in time (between laboratory experiments), being possibly affected by site-specific features of populations or stochastic factors. Results show that genotype-tolerance responses should be carefully verified at different spatial and temporal scales, before considering genotypic shifts among the possible tools for monitoring the effects of environmental stressors.  相似文献   

18.
Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are indigenous to an urban estuary contaminated with persistent and bioaccumulative contaminants (dioxin-like compounds, or DLCs) that are particularly toxic to the early development of fish. We conducted laboratory challenge experiments to compare mummichog embryos and larvae from reference sites and this highly contaminated site [New Bedford Harbor (NBH), Massachusetts, USA] for their sensitivity to DLCs. While there was variation in DLC-responsiveness within each group, fish from NBH were profoundly less sensitive to DLCs than reference fish. Specifically, concentrations of DLCs similar to those measured in NBH-collected mummichog eggs were lethal to reference embryos. Further, DLC-responsiveness was inherited and independent of maternal contaminant contributions. These findings are consistent with the conclusion that DLC contamination in NBH has contributed to the selection of fish that are resistant to the short-term toxic effects of these environmental-contaminant exposures. This adaptation may be a critical mechanism by which fish populations persist in this highly contaminated site. Further evaluation of this ecosystem may provide important information concerning the direct and indirect consequences of this “unnatural” selection. Received: 12 July 1998 / Accepted: 16 January 1999  相似文献   

19.
R. Kenny 《Marine Biology》1977,39(2):161-170
The tropical intertidal limpet Acmaea antillarum (Sowerby) was used in a series of field and aquarium growth studies, carried out in Venezuela. Both field and aquarium experiments demonstrated the formation of diurnal growth ridges and subdiurnal periodic growth striations on the shell surface. It was shown in aquarium experiments that the normal growth pattern was inhibited in constant darkness and that continous illumination stimulated the formation of extra growth ridges. Alterations of the experimental sequence of illumination influenced the formation of subdiurnal growth markings. This secondary growth pattern appears to be distinct from the basic system of diurnal ridge formation. Limpet shell lengths were related to estimated age based on diurnal growth ridge counts. It is probable that maximum shell size is attained in less than 1 year. Equations for allometric shell growth characteristics were calculated relative to shell length. Calculations for instantaneous relative growth rate were made from natural populations, experimental field populations and aquarium specimens. These were compared to show that the field and aquarium experiments demonstrated similar growth rates. The results of these observations and calculations are compared with other molluscan growth studies.  相似文献   

20.
Repeated visual censuses of different categories (juveniles, females, territorial and group males) of the stoplight parrotfish (Sparisoma viride, a protogynous hermaphrodite) over a 3-year period indicated a relatively stable size and structure of the adult population. This allowed estimates of size-specific mortality, sex change, and territory acquisition probabilities from previously reported growth rates. Comparison of the predicted number of survivors, sex changers, and territory take overs with field observations indicates that our estimates are quite reliable. However, rather large differences in mortality are obtained for the largest three size classes (>25 cm), which may be due to reduced accuracy of length estimates of large fish. A pooled mortality for these classes is therefore suggested as a more realistic estimate. The life-history implications of our findings are investigated by comparing the predicted survival and future reproductive success of fish that change sex at different sizes. Ten percent of the adults reach an age of ca. 17 years, once a length of 20 cm is attained, as predicted from the pooled estimates. Calculations based on these estimates indicate that the predicted reproductive output of a 15-year-old fish (2500 matings) is the same for early (i.e. at 20 cm) and late (>30 cm) sex changers and for an average fish subject to the estimated daily sex change and territory acquisition probabilities. These findings suggest that S. viride individuals are able to flexibly adjust the timing of sex change in an adaptive way to unpredictable local conditions. However, independent mortality estimates are needed to corroborate our present findings. Received: 2 January 1997 / Accepted: 27 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号