首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Understanding the Causes of Disease in European Freshwater Crayfish   总被引:4,自引:0,他引:4  
Abstract:  Native European freshwater crayfish (Astacida, Decapoda) are under severe pressure from habitat alteration, the introduction of nonindigenous species, and epizootic disease. Crayfish plague, an acute disease of freshwater crayfish caused by the fungus-like agent Aphanomyces astaci , was introduced into Europe in the mid-nineteenth century and is responsible for ongoing widespread epizootic mortality in native European populations. We reviewed recent developments and current practices in the field of crayfish pathology. The severity of crayfish plague has resulted in an overemphasis on it. Diagnostic methods for detecting fungi and fungal-like agents, and sometimes culturing them, are frequently the sole techniques used to investigate disease outbreaks in European freshwater crayfish. Consequently, the causes of a significant proportion of outbreaks are undetermined. Pathogen groups well known for causing disease in other crustaceans, such as viruses and rickettsia-like organisms, are poorly understood or unknown in European freshwater crayfish. Moreover, the pathogenic significance of some long-known pathogens of European freshwater crayfish remains obscure. For effective management of this culturally significant and threatened resource, there is an urgent need for researchers, diagnosticians, and resource managers to address the issue of disease in European freshwater crayfish from a broader perspective than has been applied previously.  相似文献   

2.
Abstract: Invasions of non‐native species are one of the major causes of losses of native species. In some cases, however, non‐natives may also have positive effects on native species. We investigated the potential facilitative effects of the North American red swamp crayfish (Procambarus clarkii) on the community of predators in southwestern Spain. To do so, we examined the diets of predators in the area and their population trends since introduction of the crayfish. Most predator species consumed red swamp crayfish, which sometimes occurred in over 50% of their diet samples. Moreover, the abundance of species preying on crayfish increased significantly in the area as opposed to the abundance of herbivores and to predator populations in other areas of Europe, where those predators are even considered threatened. Thus, we report the first case in which one non‐native species is both beneficial because it provides prey for threatened species and detrimental because it can drive species at lower trophic levels to extinction. Increases in predator numbers that are associated with non‐native species of prey, especially when some of these predators are also invasive non‐natives, may increase levels of predation on other species and produce cascading effects that threaten native biota at longer temporal and larger spatial scales. Future management plans should include the complexity of interactions between invasive non‐natives and the entire native community, the feasibility of successful removal of non‐native species, and the potential social and economic interests in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号