首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湿解产物与堆肥在土壤中的稳定性和腐熟度比较分析   总被引:1,自引:1,他引:1  
研究了不同培养阶段湿解产物与土壤混合物(HTS)的物质变化特征、稳定性和腐熟度,并与堆肥和土壤混合物(CS)及自然土壤进行了对比。结果表明:在培养过程中,所有HTS和CS的参数变化趋势相似,HTS的温度变化接近于CS的温度变化,稍高于自然土壤的温度,低于环境温度;pH值变化不大,基本稳定在7.6左右;在培养初期,水溶性有机碳比有机态氮w(WSC)/w(Norg)小于0.55,种子发芽系数(GI)高于80%;培养14d后,w(C)/w(N)降低至小于20,w(NH4 -N)/w(NO3--N)渐渐趋于稳定至小于0.16,GI基本高于100%;49d后,HTS的CO2释放率接近CS和自然土壤的CO2释放率;种子发芽系数的变化表明,湿解产物中含有更丰富的营养元素,可以促进植物根系的生长;相关性分析显示,w(WSC)/w(Norg)、w(NH4 -N)/w(NO3--N)和GI可以作为湿解产物腐熟度的评价指标。综合各项参数表明,湿解产物在土壤中会很快达到稳定,可以安全应用。  相似文献   

2.
A long-term field and lysimeter experiment under different amount of fertilizer-N application was conducted to explore the optimal N application rates for a high productive rice-wheat system and less N leaching loss in the Yangtse Delta region. In this region excessive applications of N fertilizer for the rice-wheat production has resulted in reduced N recovery rates and environment pollution. Initial results of the field experiments showed that the optimal N application rate increased with the yield. On the two major paddy soils (Hydromorphic paddy soil and Gleyed paddy soil) of the region, the optimal N application rate was 225-270 kg N hm(-2) for rice and 180-225 kg N hm(-2) for wheat, separately. This has resulted in the highest number of effective ears and Spikelets per unit area, and hence high yield. Nitrogen leaching in the form of NO(3-)-N occurs mainly in the wheat-growing season and in the ponding and seedling periods of the paddy field. Its concentration in the leachate increased with the N application rate in the lysimeter experiment. When the application rate reached 225 kg N hm(-2), the concentration rose to 5.4-21.3 mgN l(-1) in the leachate during the wheat-growing season. About 60% of the leachate samples determined contained NO(3-)-N beyond the criterion (NO(3-)-N 10 mg l(-1)) for N pollution. In the field experiment, when the N application rate was in the range of 270-315 kg hm(-2), the NO(3-)-N concentration in the leachate during the wheat-growing season ranged from 1.9 to 11.0 mg l(-1). About 20% of the leachate samples reached close to, and 10% exceeded, the criterion for N pollution. Long-term accumulation of NO(3-)-N from leaching will no doubt constitute a potential risk of N contamination of the groundwater in the Yangtse Delta Region.  相似文献   

3.
This study was aimed at determining microbial biomass at land water interface and the role it plays in regulating ecosystem properties of a fresh water dry tropical woodland lake. Four microbial variables namely biomass-C (Cmic), fumigated CO2-C, substrate induced respiration (SIR) and basal respiration (BR) were measured in humus samples collected from land water interface over a period of one year Microbial biomass (Cmic) was maximum during February (718 micorg CO2-C g(-1)). Similar was the case of fumigated CO2-C (560 microg CO2-C g(-1) 10 d(-1)), SIR (2900 microg CO2-C g(-1)) and BR (480 microg CO2-C g(-1)). Humus-N appeared maximum (1.60%) during November and phenolics (204 microg g(-1)) during December Gross primary productivity (GPP) was found maximum (3.30 g Cm(-2)d(-1)) during March. Almost similar trend appeared for chlorophyll and phytoplankton density. Variation in microbial biomass at land water interface can be explained by seasonality and the quality of substrate material. Asynchrony in the peaks of microbial variables with phytoplankton pulsation and GPP suggested that the microbial biomass through nutrient mineralization regulates ecosystem functioning of a fresh water woodland lake. This has relevance for evaluating the nature of anthropogenic perturbations and for maintenance of fresh water lakes void of human disturbances.  相似文献   

4.
The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%–95% reduction in CO and 36%–70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%–32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%–97% decrease in OC and 3%–65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PM2.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20.  相似文献   

5.
In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes < 2 degrees and that 20% of the area can be considered depositional. Estimated OC erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.  相似文献   

6.
To quantify the nitrogen losses through runoff and leaching under a tea plantation in hilly soil, a field experiment was conducted from October 2001 to October 2002 at United Planters Association of Southern India (UPASI), Coonoorin Nilgiri district. Runoff water was collected in the collection tub on most rainy days but the leachate was collected in the soil water sampler when the rainfall exceeded 150 mm. Higher nitrogen fertilization levels significantly influenced the NO3-N concentration in both the runoff and leachate and it was likely to cause adverse environmental impact at the delivery end. The NH4-N and NO3-N concentrations in runoff decreased with the days after fertilizer application. NH4-N concentration reduced from 10.27 mg/l on the 9th day to 1.72 mg/l on the 34th day after fertilizer application. NO3-N concentration reduced from 23.5 mg/l on the 9th day to 4.32 mg/l on the 34th day after fertilizer application. Nitrogen loss varied depending on the quantity of rainfall and runoff. The NO3-N concentration in the leachate increased with increase in depth (18.06 mg/l at 22.5 cm depth to 20.98 mg/l at 45 cm depth) whereas NH4-N concentration decreased with increase in depth (6.32 mg/l at 22.5 cm depth to 5.79 mg/l at 45 cm depth.  相似文献   

7.
不同水分管理模式下水稻土氮素形态转化与N2O释放的关系   总被引:9,自引:0,他引:9  
李勇先  田光明 《生态环境》2003,12(2):157-159
在实验室培养条件下,对稻田土壤在4种水分管理模式下施用尿素后N素形态转化和N2O的释放情况进行测定。结果表明,N2O的释放峰值与NH4+-N浓度峰值同时出现,即尿素迅速水解为NH4+-N的同时N2O就大量释放。且不同水分管理模式都迅速达到N2O释放的高峰,但不同模式的峰值存在明显差异,其顺序为:干湿交替>临界饱和水>淹水管理>旱作管理。研究结果还表明,NO2--N浓度在第7天达到峰值时并没有出现相应的N2O释放峰,这可能与土壤的较高pH有关。60%WFPS处理以及干湿交替培养的落干期NO3--N浓度会持续增加,并随着NO3--N浓度峰值的出现,N2O的释放也出现一个峰值。  相似文献   

8.
The agricultural non-point source pollution by nitrogen (N) and phosphorus (P) loss from typical paddy soil (whitish soil, Bai Tu in Chinese) in the Taihu Lake region was investigated through a case study. Results shown that the net load of nutrients from white soil is 34.1 kg ha(-1) for total nitrogen (TN), distributed as 19.4 kg ha(-1), in the rice season and 14.7 kg ha(-1) in the wheat season, and for total phosphorus (TP) 1.75 kg ha(-1), distributed as 1.16 kg ha(-1) in the rice season and 0.58 kg ha(-1) in the wheat season. The major chemical species of N loss is different in the two seasons. NH4-N is main the form in the rice season (53% of TN). NO3-N is the main form in wheat season (46% of TN). Particle-P is the main form in both seasons, (about 56% of TP). The nutrient loss varied with time of the year. The main loss of nutrients happened in the 10 days after planting, 64% of TN and 42% of TP loss, respectively. Rainfall and fertilizer application are the key factors which influence nitrogen and phosphorus loss from arable land, especially rainfall events shortly after fertilizer application. So it is very important to improve the field management of the nutrients and water during the early days of planting.  相似文献   

9.
水田施用硝态氮肥长期以来被人们视为禁区.我们于1989—1990年在中国农业科学院红壤实验站连续两年的田间试验结果表明:和铵态氮(氯化铵)肥相比,水田施用硝态氮肥有利于早稻幼苗期的生长和发育,并促进早稻和晚稻的生殖生长,还增强水稻抵抗病虫害和干热风的能力,尤其是抗稻纵卷叶螟和纹枯病的效果显著.试验证实,硝态氮一次性作基肥施用的效应不如铵态氮,而分次浅施的产量最高。  相似文献   

10.
珠江三角洲四种森林类型土壤CO2通量特征研究   总被引:1,自引:0,他引:1  
采用开路式土壤CO2通量测量系统Li-8100&Li-8150对珠江三角洲地区尾叶桉(Eucalyptus urophylla)人工林、乡土树种恢复林、针阔叶混交林和常绿阔叶林4种林型的土壤CO2通量进行了观测。结果表明:4种森林类型年均土壤CO2通量为尾叶桉人工林(3.35μmol.m-2.s-1)>针阔叶混交林(2.66μmol.m-2.s-1)>乡土树种恢复林(2.09μmol.m-2.s-1)>常绿阔叶林(1.86μmol.m-2.s-1);旱季土壤CO2通量明显小于雨季。前3种森林类型凋落物呼吸处理表明,旱季对照组土壤CO2通量均小于相应的去除凋落物组、雨季则相反,全年的对比结果显示,3种森林类型的凋落物呼吸贡献分别达到1.3%、7.1%和10.8%。土壤CO2通量与10 cm土壤温度呈显著指数相关,且土壤CO2通量温度敏感指数表现为针阔叶混交林Q10最大(3.49),尾叶桉人工林Q10最小(1.95)。  相似文献   

11.
为研究水田土壤中氮的行为,施给15NH4 或15NO3-标记的硝胺(NH415NO3或15NH4NO3)的沙壤土(Shirasu soil)添充在根箱里,对Japonica水稻(品种Hinohikari)进行温室栽培6周.收割后,水稻植株分地上部和根部,对各自的全氮,15N atom%进行测定.根箱各区域的土壤按着鲜土形态进行采取后,对此全氮,NO3-N,水溶性NH4-N,KCl抽出NH4-N和其各自的15N atom%进行测定.研究结果表明,土壤全氮含量与栽培前相比,在非根际明显降低,但在根际比非根际要高,保持了与栽培前相同的水平.土壤NO3-N浓度从非根际到根际递增,但与其栽培前相比显著地降低,在整个根箱里,施给NO3-N的79%为因脱氮而损失.土壤中NO3-N的大部分来自于土壤氮化合物,来自施肥的比例却较低,尤其是在根际.反而,施给NO3-N的残存率约仅为16%左右,但其中有机态氮所占的比率在非根际里55%~86%,在根际却达到了93%.土壤水溶性NH4-N和KCl抽出NH4-N浓度靠近根际逐渐降低,而且在非根际两者匀由1∶10的比例存在,但在根际里水溶性NH4-N没被检索到.在非根际里,土壤KCl抽出NH4-N的35%~66%为来自施肥,但其比例在根际里却降到15%左右.在土壤中残存的来自施给NH4-N的氮化合物之中,有机态氮所占的比例在非根际里约为11%~65%,但在根际却达到了92%.以上结果表明,在水稻根际,氮的无机化和有机化的活性比非根际显著.  相似文献   

12.
为研究甜椒根际土壤中氮的行为,与既报同样的方法进行研究,即,利用15NH4+,15NO3-双标记的硝胺(NH,4>15NO3,15NH4NO3),在温室里对甜椒进行6周的根箱栽培.收割后,对土壤全氮,NO3-N,水溶性NH4-N,KCl抽出NH4-N和其各自的15N atom%进行测定.结果表明,土壤全氮从非根际到根际逐渐增加,与栽培前相比,土壤全氮在非根际中减少,却在根际中增大.土壤NO3-N浓度朝根际增加到离根际2 mm处,然后激减到根际.NO3-N的来自施给NO3-N的比例靠近根际逐渐升高,在根际达到了69%,反而,来自施给NH4-N的比例靠近根际逐渐降低,在根际将至7%左右.水溶性NH4-N和KCl抽出NH4-N浓度靠近根际逐渐降低,而且,从非根际到根际,二者匀保持3∶10的比例.KCl抽出NH4-N的来自施给NO3-N的比例靠近根际逐渐升高,但在根际仍低于3%,反而,其来自施给NH4-N的比例在非根际约为47%~55%,在根际降到41%.在整个根箱里,施用NO3-N的有機率达到62%,但其值在根际比非根圈要低.相反,施用NH4-N的有機率仅11%左右,但其值在根际比非根际要高.以上结果表明,在甜椒根际土壤中氮的无机化-有机化活性与水稻相比显著低.  相似文献   

13.
石灰预处理对树叶堆肥过程中养分转化的影响   总被引:4,自引:0,他引:4  
以树叶干质量的0%、1.00%、2.50%和4.00%的石灰预处理树叶,24h后分别将预处理后的树叶与鸡粪联合堆肥,研究不同用量石灰预处理树叶对树叶堆肥过程中养分转化的影响。试验在自制的堆肥反应器内进行,采用间歇式强制通风的方式,进行为期59d的堆肥试验。结果表明:石灰预处理树叶24h可以有效的降低树叶中的有机质质量分数,以4.00%的石灰预处理的树叶其有机质降幅达6.00%;石灰预处理24h后,各处理pH相差不大;EC的变化与pH相似;预处理前后,各处理总氮、总磷和总钾的质量分数相差不大。用石灰预处理后的树叶堆肥有利于堆肥有机质的降解,尤以2.50%石灰预处理的效果最好;有利于堆肥w(C)/w(N)的降低,其降低幅度与石灰用量成正比;有利于减少堆肥过程中氮素的损失,且氮素损失与石灰使用量呈反比;有利于堆肥NH4 -N质量分数的降低;提高堆肥终产品NO3--N的质量分数,其质量分数与石灰用量呈正比;有利于堆肥中钾的浓缩;对堆肥的pH、EC、w(NH4 -N)/w(NO3--N)和总磷的影响不大。综合考虑试验结果后认为,以4.00%石灰预处理的效果最为理想。  相似文献   

14.
广州市灰霾期间大气颗粒物中有机碳和元素碳的粒径分布   总被引:6,自引:0,他引:6  
使用冲击式采样器(MOUDI)采集广州市灰霾形成过程的大气颗粒物.分析了有机碳(OC)和元素碳(EC).结果表明,灰霾期间大气主要消光部分积聚态颗粒物及其中的OC和EC,在PM10(可吸入颗粒物)中所占的比例及其绝对浓度要远高于正常天气.正常天气OC和EC呈双模态分布,严重灰霾天气EC的粒径分布呈单一模态分布,OC的粒径分布呈双模态分布,峰值都向大粒径方向偏移.结果显示,大气颗粒物、OC和EC在积聚态的大幅度增长是形成灰霾天气的重要原因.  相似文献   

15.
We conducted a four-week laboratory incubation of soil from a Themeda triandra Forsskal grassland to clarify mechanisms of nitrogen (N) cycling processes in relation to carbon (C) and N availability in a hot, semiarid environment. Variation in soil C and N availability was achieved by collecting soil from either under tussocks or the bare soil between tussocks, and by amending soil with Themeda litter. We measured N cycling by monitoring: dissolved organic nitrogen (DON), ammonium (NH4+), and nitrate (NO3-) contents, gross rates of N mineralization and microbial re-mineralization, NH4+ and NO3- immobilization, and autotrophic and heterotrophic nitrification. We monitored C availability by measuring cumulative soil respiration and dissolved organic C (DOC). Litter-amended soil had cumulative respiration that was eightfold greater than non-amended soil (2000 compared with 250 microg C/g soil) and almost twice the DOC content (54 compared with 28 microg C/g soil). However, litter-amended soils had only half as much DON accumulation as non-amended soils (9 compared with 17 microg N/g soil) and lower gross N rates (1-4 compared with 13-26 microg N x [g soil](-1) x d(-1)) and NO3- accumulation (0.5 compared with 22 microg N/g soil). Unamended soil from under tussocks had almost twice the soil respiration as soil from between tussocks (300 compared with 175 microg C/g soil), and greater DOC content (33 compared with 24 microg C/g soil). However, unamended soil from under tussocks had lower gross N rates (3-20 compared with 17-31 microg N x [g soil](-1) d(-1)) and NO3- accumulation (18 compared with 25 microg N/g soil) relative to soil from between tussocks. We conclude that N cycling in this grassland is mediated by both C and N limitations that arise from the patchiness of tussocks and seasonal variability in Themeda litterfall. Heterotrophic nitrification rate explained >50% of total nitrification, but this percentage was not affected by proximity to tussocks or litter amendment. A conceptual model that considers DON as central to N cycling processes provided a useful initial framework to explain results of our study. However, to fully explain N cycling in this semiarid grassland soil, the production of NO3- from organic N sources must be included in this model.  相似文献   

16.
采用开路式土壤CO2通量测量系统Li-8100&Li-8150对珠江三角洲地区尾叶桉(Eucalyptus urophylla)人工林、乡土树种恢复林、针阔叶混交林和常绿阔叶林4种林型的土壤CO2通量进行了观测。结果表明:4种森林类型年均土壤CO2通量为尾叶桉人工林(3.35μmol.m-2.s-1)〉针阔叶混交林(2.66μmol.m-2.s-1)〉乡土树种恢复林(2.09μmol.m-2.s-1)〉常绿阔叶林(1.86μmol.m-2.s-1);旱季土壤CO2通量明显小于雨季。前3种森林类型凋落物呼吸处理表明,旱季对照组土壤CO2通量均小于相应的去除凋落物组、雨季则相反,全年的对比结果显示,3种森林类型的凋落物呼吸贡献分别达到1.3%、7.1%和10.8%。土壤CO2通量与10 cm土壤温度呈显著指数相关,且土壤CO2通量温度敏感指数表现为针阔叶混交林Q10最大(3.49),尾叶桉人工林Q10最小(1.95)。  相似文献   

17.
The Madagascar Periwinkle, Catharanthus roseus (L.) G. Don (a valued medicinal plant) was exposed to different concentrations ofheavymetals like, CdCl, and PbCl, with a view to observe their bioaccumulation efficiency. Germination was inhibited by both the heavy metals in the seeds previously imbibed in GA, and KNO, for 24 hr. EC50 (the effective concentration which inhibits root length by 50%) was recorded as 180 microM for CdCl2, and 50 microM for PbCl2. Both alpha-amylase and protease activity were reduced substantially on treatment of seeds with increasing concentrations of CdCl2, and PbCl2. Malondialdehyde (MDA) a product of lipoxigenase (LOX) activity also increased due to the treatment of both CdCl, and PbCl2. When two-months-old plants grown in normal soil were transferred to soils containing increasing amounts of these two heavy metals, senescence of lower leaves and extensive chlorosis were noticed after four days of transfer However, plants gradually acclimatized and after 20 days the chlorophyll content was almost comparable to normal. Plants receiving CdCl2 treatment (250 microg g(-1) and less) became acclimatized after two weeks and started normal growth. But PbCl2 of 432 microg g(-1) and less could not affect the plant growth throughout, after a preliminary shock was erased. In case of CdCl2 treatment, a stunted growth with reduced leaf area, reduced biomass and sterility were recorded after six months, while plants show normal growth and flowering in case of PbCl2 treatment. Total alkaloid was also found to be decreased in the roots of CdCl2 treated plants. No change was observed in case of PbCl2. GA3 treatments to the CdCl2 treated plants show internode elongation and increase in leaf area with relatively elongated leaves and thinning of stem diameter AAS analyses of leaves of treated plants exhibited 5-10% accumulation of cadmium, but there was no accumulation of lead at all.  相似文献   

18.
Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities.  相似文献   

19.
To understand the short-term effects of forest gap by human harvesting on soil available nutrient in Pinus massoniana plantations, the variations of soil ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) concentrations in the gap center and gap edge during growing season were observed in seven gaps of different size (Gl: 100 m2; G2:225 m2; G3:400 m2; G4:625 m2; G5:900 m2; G6:1225 m2; G7:1600 m2) and pure understory of a 39-year-old masson pine plantation in a hilly area of the upper reaches of Yangtze River. The results showed that in the early stage of gap formation, the gap size had significant effect on NH4+-N, the season changes on NP3--N, and the interaction effect of gap size and seasonal variation on NH4+-N and NO3--N. The difference of NH4+-N and NO3--N between the gap center and gap edge was not significant. (I) The NH4+-N content was 4.30-11.99 mg kg-1, and NO3--N content was 2.57-10.81 mg kg-1. There was no obvious difference in NH4+-N and N03--N among gaps of different size in early or late growing seasons, when both increased first and decreased afterwards in the middle of growing season. The gaps of 100∼400 m2 area had a higher content of available nitrogen. (2) The seasonal dynamic differed between NH4+-N and NO3--N, with the former lower in middle growing season whereas the latter higher in the middle growing season but lower in the end of growing season. The soil NH4+-N was higher than NO3- -N in the early and late periods, but lower in the middle period. (3) The soil NH4+-N and NO3--N in parts of gaps were lower than understory in the early and late growing season. (4) Correlation analyses showed that NH4+-N had significant positive correlation with microbial biomass nitrogen (MBN), and NO3--N with soil temperature, MBN and organic matter. But the impact of soil water content on available nitrogen was not significant. These results suggested that soil temperature and microbial activity variation caused by gap harvesting are the main factors affecting soil available nitrogen content of Pinus massoniana plantations.  相似文献   

20.
煤矸石对盐碱土壤理化性质的改良效果   总被引:1,自引:0,他引:1  
盐碱土壤物理结构差,植物成活率低,煤矸石具有改善盐碱土壤物理结构和化学性质的潜力,将煤矸石应用于盐碱地,能够达到煤矸石废弃资源循环利用和盐碱地改良的双重效果。为阐明煤矸石对盐碱土壤的改良效果和对土壤物理化学性质的影响,将不同用量(0、10%、20%、30%、40%、50%)和不同粒径(小粒径<1 mm、中粒径1—5 mm、大粒径>5 mm以及小中大等比例混合粒径)煤矸石施用于盐碱土壤,通过紫花苜蓿(Medicago sativa)盆栽试验,测定土壤的物理化学性质。结果表明,随着煤矸石用量的增加,紫花苜蓿株高和生物量呈现先增后减的趋势,20%用量煤矸石处理的株高和生物量分别比对照平均提高了21.45%和25.89%;团聚体平均重量直径(MWD)呈现先减后增再减的趋势;土壤饱和含水量、田间持水量呈现先稳定后降低的趋势;土壤EC值、pH值、碱解氮含量呈现持续降低的趋势,其中20%用量煤矸石处理的土壤pH比对照平均下降了0.51个pH单位;土壤总碳、总氮、总磷、有效磷含量呈现持续上升的趋势。从粒径角度考虑,对土壤EC、pH降幅以及团聚体含量、总养分、速效养分含量,小粒径>混合粒径≈中粒径>大粒径。土壤综合指数(SQI)随煤矸石用量增加先升后降;各粒径煤矸石处理下的SQI峰值大小表现为小粒径>混合粒径>中粒径>大粒径;20%用量下小粒径和混合粒径煤矸石处理的土壤SQI最高,分别比对照显著提高了68.27%和57.13%。综上,煤矸石可以改良盐碱土壤质量,促进植物生长,20%用量的小粒径和混合粒径煤矸石效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号