首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interrelations exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake. Annual net nitrogen mineralization in soils of different plant communities in the high altitude zone of Spil mountain located in the Mediterranean phytogeographical region of Turkey was investigated throughout one year by field incubation method. Seasonal fluctuations resulting from field incubation were markedly higher in autumn and spring than summer. These are mainly associated with the changes in soil moisture being at minimum in the Mediterranean summer. A significant correlation was developed between the net Nitrate (kg NO3(-)-N ha week(-1)) production and soil water content (p<0.05; r = 0.316 in soil of 0-5 cm; r = 0.312 in soil of 5-15 cm). The results showed that the annual productivity of nitrogen mineralization shows different values depending on communities. Annual net ammonium (NH4(+)-N) production in the soils of each community was negatively estimated. However annual net nitrate (NO3(-)-N) production (0-15 cm) was higher in grassland (27.8 kg ha y(-1)) and shrub (25.0 kg ha y(-1)) than forest (12.4 kg ha y(-1)) community. While annual net N(min) values were close to each other in grassland (14.5 kg ha y(-1)) and shrub (14.1 kg ha y(-1)), but negative in forest community (-3.6 kg ha y(-1)). The reasons for these differences are discussed.  相似文献   

2.
Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP.  相似文献   

3.
A field experiment was conducted for two years on a sandy loam (Typic Ustochrept) soil of Punjab to study the effect of organic materials and rice cultivars on methane emission from rice fields. The methane flux varied between 0.04 and 0.93 mg m(-2) hr(-1) in bare soil and transplanting of rice crop doubled the methane flux (0.07 to 2.06 mg m(-2) hr(-1)). Among rice cultivars, significantly (p < 0.05) higher amount of methane was emitted from Pusa 44 compared to PR 118 and PR 111. Application of organic materials enhanced methane emission from rice fields and resulted in increased soil organic carbon content. The greatest seasonal methane flux was observed in wheat straw amended plots (229.6 kg ha(-1)) followed by farmyard manure (111.6 kg ha(-1)), green manure (85.4 kg ha(-1)) and the least from rice straw compost amended plots (36.9 kg ha(-1)) as compared to control (21.5 kg ha(-1)). The differential effect of organic materials in enhancing methane flux was related to total carbon or C:N ratio of the material. The results showed that incorporation of humified organic matter such as rice straw compost could minimize methane emission from rice fields with co-benefits of increased soil fertility and crop productivity.  相似文献   

4.
A field experiment was conducted to study the impact of Sulphur(S) and Phosphorus (P) on yield, nutrient status of soil and their contents in pigeonpea (Cajanus cajan) during the year 2008-2009. Seven treatments were studied in Factorial Randomized Block Design with three replications. The treatment combinations were derived from three levels of sulphur (0, 20 and 40 kg S ha(-1)) and four levels of phosphorus (0, 25, 50 and 75 kg ha(-1)). The experimental soil was medium black, slightly calcareous, clay in texture and slightly alkaline in reaction. The results indicated a significant increase in grain yield (14.81 q ha(-1)) and straw yield (41.26 q ha(-1)) of pigeonpea after 20 kg S ha(-1) and 50 kg P2O5 ha(-1) treatment with common dose of nitrogen @ 30 kg ha(-1). The increase in grain and straw yield was 102.77 and 52.87% as compare to higher over control. Maximum number of pods plant(-1), maximum number of grains pod and test weight by this treatment was also observed as compared to control. Application of S and P improved soil fertility status and S alone did not influence P availability. Hence, in order to maintain the fertility status of the soil at high level, combine application of 20 kg S ha(-1) with 50 kg P2O5 ha(-1) is essential. The residual fertility status of soil is advocated for rainfed pigeonpea crop grown on vertisol in Vidarbha region.  相似文献   

5.
The influence of urbanization on nutrient cycling is vaguely known. Here we document that birds, especially those increasing in urban areas (such as crows, Corvus macrorhynchos and C. corone), affect nutrient cycles. Using fecal traps, we measured phosphorus (P) and nitrogen (N) input from the excrement of birds in fragmented forests in an urban landscape. Sources of avian feces were examined on the basis of carbon (C), N, and P percentages and stable isotopes of delta15N and delta13C. Nitrogen and P input was aggregated in the urban landscape, being especially high at the forest where crows roosted during winter. The annual P input due to bird droppings (range 0.068-0.460 kg x ha(-1) x yr(-1); mean 0.167 kg x ha(-1) x yr(-1)) was 12.4% of the total of other pathways in typical forests and 52.9% in the evergreen forest where crows roosted. The annual N input due to bird droppings (range 0.44-3.49 kg x ha(-1) x yr(-1); mean 1.15 kg x ha(-1) x yr(-1)) was 5.2% of the total of other pathways in typical forests and 27.0% in the evergreen forest used by roosting crows. Expected sources of nutrients in feces included insects in the breeding season, fruits in autumn, and mammals and birds in winter. Stable isotopes suggested that the source of nutrients in forests used by roosting crows was from outside the forest. Therefore, birds played a significant role as transporters of nutrients from garbage (including fish, livestock, and/or C4 plants such as corn, with high delta15N and delta13C) in residential and business areas to fragmented evergreen forests, especially near their winter roosts.  相似文献   

6.
Field experiment were conducted at CSK HPKV Research Farm, Palampur during Rabi seasons of 2000-01 and 2001-02, to study the response of onion (Allium cepa var Patna red) at four sulphur levels (0, 15, 30 and 60 kg ha(-1)) applied through Gypsum and S95. The analysis was done to allocate the limited availability of sulphur for maximizing net profit over fertilizer cost. The results show that the dose of sulphur under its full availability is 43.02 kg ha(-1). But under its scarce availability the maximum benefit would occur when it is applied up to 32.11 kg ha(-1) followed by even distribution of fertilizer i.e. 20 kg ha(-1). The returns following sulphur application at these rates, would be Rs 69340, 73092 and 68700 ha(-1) respectively.  相似文献   

7.
The spatial distribution patterns of the nitrogen and phosphorus input/intake amounts in crop production within two small basins are examined, based upon a cropping unit distribution map that is obtained from remote sensing data analysis. Firstly, we examine the availability and suitability of approaches to the spatial distribution analysis of cultivation patterns classified from material flow characteristics of crop production using seasonal remote-sensing data. Secondly, material flow units in crop production are grouped according to the cultivation patterns obtained from the remote-sensing data analysis. Consequently, the spatial patterns of the amounts of both nitrogen and phosphorus inputs/intakes through crop production on farmland are examined and their spatial distribution maps are prepared according to the material flow units. In addition, we developed a nitrogen flow and runoff model and the model is simulated based on the examination of the results of spatial distribution patterns of the material flow units. The annual nitrogen runoff from small catchments, where various crops are cultivated, varies from 2.7 kg ha(-1) year(-1) to 108 kg ha(-1) year(-1) and the annual balanced losses of nitrogen in small catchments varied from -30 kg ha(-1) year(-1) to 101 kg ha(-1) year(-1). Also, the monthly changes in soil nitrogen of each material flow unit is estimated at -55 kg ha(-1) as a maximum decrease and 114 kg ha(-1) as a maximum increase. These results indicate that the spatial distribution patterns of nutrient input and intake through agricultural activities should be considered when analyzing the material flows and nutritient movement in soil-water systems in rural areas for watershed environmental control and regional agricultural management.  相似文献   

8.
Six ponds of age 3 were selected 45 km north from Suzhou in the Tailake region, and research conducted on nitrogen and phosphorus cycling in P. vannanmei (Penaeus vannanme) ponds and M. nipponense (Macrobrachium nipponense) hatchery ponds under normal management. Two treatments each had three replications. The results confirmed that feed was the major path of nitrogen and phosphorus input, each accounted for 61.24% (193.81 kg ha(-1)) and 81.08% (45.20 kg ha(-1)) of the total nitrogen and phosphorus input for P. vannanme ponds; the values for M. nipponense ponds were 43.93% (86.31 kg ha(-1)) and 57.67% (14.61 kg ha(-1)), respectively. Water pumped into ponds contributed on average 83.57 kg ha(-1) nitrogen and 8.48 kg ha(-1) phosphorus for P. vannanmei ponds, and 87.48 kg ha(-1) nitrogen and 7.00 kg ha(-1) phosphorus for M. nipponense hatchery ponds. Shrimp harvest recovered 102.81 kg ha(-1) nitrogen (32.94% of the total nitrogen input) and 7.94 kg ha(-1) phosphorus (14.23% of the total phosphorus input) for P. vannanme ponds; and 43.94 kg ha(-1) nitrogen and 4.46 kg ha(-1) phosphorus for M. nipponense hatchery ponds. The sum of nitrogen losses through volatilization, denitrification and sedimentation was 173.62 and 122.39 kg ha(-1), 54.86% and 62.29% of the total nitrogen input for P. vannanme ponds and M. nipponense hatchery ponds, respectively. Sediment accumulated 41.46 and 14.63 kg ha(-1) phosphorus, 74.37% and 64.85% of the total phosphorus input for P. vannanm ponds and M. nipponense hatchery ponds. Draining and seeping caused 40.06 kg ha(-1) nitrogen (12.66% of total nitrogen input) and 6.36 kg ha(-1) phosphorus (11.40% of total phosphorus input) loss to the surrounding water from P. vannanme ponds in 114 days; 30.14 kg ha(-1) nitrogen (15.34% of the total input) and 4.45 kg ha(-1) phosphorus (17.57% of the total input) to channel water from M. nipponense hatchery ponds in 87 days, respectively. Countermeasures for sustainable pond management include improving feeds and feeding, sediment treatments, machine aerating, chemicals with no pollution, and integrated fish-shrimp cultivation. Management of water resources for pond and methods to reduce nitrogen and phosphorus loading into surrounding water from drainage are elucidated.  相似文献   

9.
The aim of this study was to detect vegetation change and to examine trophic interactions in a Sphagnum-dominated mire in response to raised temperature and nitrogen (N) addition. A long-term global-change experiment was established in 1995, with monthly additions of N (30 kg x ha(-1) x yr(-1)) and sulfur (20 kg x ha(-1) x yr(-1)) during the vegetation period. Mean air temperature was raised by 3.6 degrees C with warming chambers. Vegetation responses were negligible for all treatments for the first four years, and no sulfur effect was seen during the course of the experiment. However, after eight years of continuous treatments, the closed Sphagnum carpet was drastically reduced from 100% in 1995 down to 41%, averaged over all N-treated plots. Over the same period, total vascular plant cover (of the graminoid Eriophorum vaginatum and the two dwarf-shrubs Andromeda polifolia and Vaccinium oxycoccos) increased from 24% to an average of 70% in the N plots. Nitrogen addition caused leaf N concentrations to rise in the two dwarf-shrubs, while for E. vaginatum, leaf N remained unchanged, indicating that the graminoid to a larger extent than the dwarf-shrubs allocated supplemented N to growth. Concurrent with foliar N accumulation of the two dwarf-shrubs, we observed increased disease incidences caused by parasitic fungi, with three species out of 16 showing a significant increase. Warming caused a significant decrease in occurrence of three parasitic fungal species. In general, decreased disease incidences were found in temperature treatments for A. polifolia and in plots without N addition for V. oxycoccos. The study demonstrates that both bryophytes and vascular plants at boreal mires, only receiving background levels of nitrogen of about 2 kg x ha(-1) x yr(-1), exhibit a time lag of more than five years in response to nitrogen and temperature rise, emphasizing the need for long-term experiments. Moreover, it shows that trophic interactions are likely to differ markedly in response to climate change and increased N deposition, and that these interactions might play an important role in controlling the change in mire vegetation composition, with implications for both carbon sequestration and methane emission.  相似文献   

10.
The agricultural non-point source pollution by nitrogen (N) and phosphorus (P) loss from typical paddy soil (whitish soil, Bai Tu in Chinese) in the Taihu Lake region was investigated through a case study. Results shown that the net load of nutrients from white soil is 34.1 kg ha(-1) for total nitrogen (TN), distributed as 19.4 kg ha(-1), in the rice season and 14.7 kg ha(-1) in the wheat season, and for total phosphorus (TP) 1.75 kg ha(-1), distributed as 1.16 kg ha(-1) in the rice season and 0.58 kg ha(-1) in the wheat season. The major chemical species of N loss is different in the two seasons. NH4-N is main the form in the rice season (53% of TN). NO3-N is the main form in wheat season (46% of TN). Particle-P is the main form in both seasons, (about 56% of TP). The nutrient loss varied with time of the year. The main loss of nutrients happened in the 10 days after planting, 64% of TN and 42% of TP loss, respectively. Rainfall and fertilizer application are the key factors which influence nitrogen and phosphorus loss from arable land, especially rainfall events shortly after fertilizer application. So it is very important to improve the field management of the nutrients and water during the early days of planting.  相似文献   

11.
Increases in the deposition of anthropogenic nitrogen (N) have been linked to several terrestrial ecological changes, including soil biogeochemistry, plant stress susceptibility, and community diversity. Recognizing the need to identify sensitive indicators of biotic response to N deposition, we empirically estimated the N critical load for changes in alpine plant community composition and compared this with the estimated critical load for soil indicators of ecological change. We also measured the degree to which alpine vegetation may serve as a sink for anthropogenic N and how much plant sequestration is related to changes in species composition. We addressed these research goals by adding 20, 40, or 60 kg N x ha(-1) x yr(-1), along with an ambient control (6 kg N x ha(-1) x yr(-1) total deposition), to a species-rich alpine dry meadow for an eight-year period. Change in plant species composition associated with the treatments occurred within three years of the initiation of the experiment and were significant at all levels of N addition. Using individual species abundance changes and ordination scores, we estimated the N critical loads (total deposition) for (1) change in individual species to be 4 kg N x ha(-1) yr(-1) and (2) for overall community change to be 10 kg N x ha(-1) x yr(-1). In contrast, increases in NO3- leaching, soil solution inorganic NO3-, and net N nitrification occurred at levels above 20 kg N x ha(-1) x yr(-1). Increases in total aboveground biomass were modest and transient, occurring in only one of the three years measured. Vegetative uptake of N increased significantly, primarily as a result of increasing tissue N concentrations and biomass increases in subdominant species. Aboveground vegetative uptake of N accounted for <40% of the N added. The results of this experiment indicate that changes in vegetation composition will precede detectable changes in more traditionally used soil indicators of ecosystem responses to N deposition and that changes in species composition are probably ongoing in alpine dry meadows of the Front Range of the Colorado Rocky Mountains. Feedbacks to soil N cycling associated with changes in litter quality and species composition may result in only short-term increases in vegetation N pools.  相似文献   

12.
研究了鄂南红壤区不同种植模式的旱地及坡荒地、不同轮作模式的水田、水田改旱菜地的土壤养分状况。本区土壤有机质含量和氮素含量较低,磷素普遍缺乏,钾素含量较低且呈下降趋势。土壤有机质及氮含量呈现水田类>水田改旱地类>旱地类;土壤磷含量则是水田改旱地类>水田类>旱地类;水田类钾含量明显低于旱地类和水田改旱地类,而且三熟制油菜-西瓜-晚稻种植模式下,土壤全钾及速效钾含量呈下降趋势。水田改为旱作是改善土壤水分状况的有效措施。  相似文献   

13.
Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.  相似文献   

14.
玉米-花生混作系统中的氮铁营养效应   总被引:2,自引:0,他引:2  
采用盆栽试验的方法研究了不同施氮水平和种间相互作用对花生铁营养、根瘤固氮能力以及系统氮营养的影响。结果表明,在本试验种植密度下,施氮水平和种植方式对下针期单株花生生物量无显著影响。在不同施氮水平下,玉米-花生混作不仅均显著改善了花生铁营养,而且玉米对氮素的大量吸收显著降低了混作花生根际土壤硝态氮的质量分数,从而使得花生根瘤数增加,根瘤固氮酶活性增强。混作花生铁营养受混作玉米氮营养及作物发育状况的影响较大,并且下针期花生固氮酶活性受施氮抑制及花生铁营养改善的促进。这说明,根际土壤硝态氮的质量分数的降低和花生铁营养的改善是石灰性土壤上花生固氮能力增强的关键因素,而花生生物固氮作用的增强是该混作系统体现氮营养优势的主要原因。  相似文献   

15.
A survey was done in 15 typical villages, 150 soil and 86 vegetable plant samples were taken in Jiaxin prefecture of the Taihu Lake region, northern Zhejian province. Results indicate that after 15-20 years land use changed from the paddy rice-wheat (or oilseed rape) double cropping system, to a continuous vegetable land has caused soil quality dramatic change. (1) Acidification: average soil pH was 5.4; about 61% of total samples were pH < 5.5. It was 0.9 units lower than 10 years ago with same upland vegetable cultivation and was 1.2 units lower than soil pH of paddy rice-wheat (or oilseed rape) rotation. (2) Fertilizer salt accumulation: the average salt content was 0.28%, among these about 36.2% of the total samples contained more than 0.3%. (3) Nitrate N and available phosphorus (P) over accumulation: on average it was 279 mg NO3-N/kg, and 45-115 mg P/kg. Nitrate N four times higher and available P 4-10 times more than it is in present paddy rice-wheat rotation soils respectively. This has caused wide concern because of possible groundwater and well drinking water pollution by leached nitrate N and the P losses to water by runoff from vegetable lands induce surface water eutrophication.  相似文献   

16.
Nitrogen export from an agriculture watershed in the Taihu Lake area, China   总被引:13,自引:0,他引:13  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8-43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO(3-)-N + NH4+-N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

17.
土壤环境的盐渍化演变过程是盐渍化其它过程研究的基础。采用空间代替时间的方法,在干旱绿洲区选择大麦(Hordeum vulgare L.)作物地不同盐渍化阶段农田为研究对象,并以非盐渍化农田作为对照,探讨农田盐渍化过程中土壤理化特性的演变过程。结果表明,(1)随盐渍化程度的加剧,土壤颗粒组成发生变化,沙粒含量趋于增加,黏粒含量趋于减少,粉粒含量在重度和极重度盐渍化阶段完全消失。表土层土壤容重呈显著增加趋势(P〈0-05),但土壤温度没有显著性变化(P〉0-05)。(2)土壤有机碳、全氮、全磷和速效氮含量呈波动式降低趋势,而速效磷含量呈波动式增加的趋势。与未盐渍化农田相比,轻度、中度、重度和极重度盐渍化农田土壤表层有机碳和全氮含量分别减少了14.03%、26.26%、42.01%、48.03%;19-08%、35.63%、46.84%、56.88%。(3)随盐渍化程度的加剧,盐分表聚现象明显,除 HCO3-外,Na+、Cl-、K+、Mg2+、SO42-、全盐含量均显著增加(P〈0-05),且随着深度的增加逐渐下降。与未盐渍化农田相比,轻度、中度、重度、极重度盐渍化农田土壤电导率、全盐,SO42-,Na+含量分别增加了31.42%、74.42%、203.95%、693.58%,6.56%、96.38%、86.36%、414.86%,5.23%、114.58%、104.00%、430.32%,31.46%、145.22%、345.11%、1797.70%;HCO3-下降了-11-31%、2.02%、3.75%、10.94%。(4)土壤电导率、全盐、SO42-、Ca2+、Cl-、Mg2+、K+、Na+之间呈极显著正相关(P〈0.01),但与土壤含水量没有显著正负相关性,与黏粉粒含量呈显著负相关(P〈0-05);土壤有机碳、全氮、速效氮之间呈极显著正相关(P〈0.01),但与土壤含水量没有显著正负相关性,与土壤电导率、全盐、SO42-、Ca2+、Cl-、Mg2+、K+、Na+之间呈极显著负相关(P〈0.01)。这说明,在农田盐渍化过程中,随盐渍?  相似文献   

18.
Significant positive effects of 30 kg/ha of sulphur as manifested on yield and yield parameters of garlic were further carried over to following maize crop. Garlic bulb and foliage yield (6.3 and 0.8 t/ha respectively) obtained at 30 kg/ha of sulphur dose was significantly higher over without sulphur (3.7 and 0.5 t/ha respectively) as revealed from two years' pooled data. Similarly number of leaves/plant, weight of cloves/5bulbs and weight/100 cloves at the said sulphur dose significantly increased over without sulphur from 10.5 to 11.9, 98.3 to 141.2 g and from 159 to 217 g in respective manner Increase in grain yield of maize (residual effect) and in the economic yield of the whole cropping sequence (Bulb yield of garlic and grain yield of maize) i.e. direct plus residual effect at 30 kg/ha of sulphur dose over without sulphur was from 28.3 to 47.2 and from 71 to 116 q/ha in respective manner i.e. with significant differences. Sulphur use efficiencies (kg yield/kg sulphur) of these crops at 15, 30 and 45 kg/ha over no sulphur were 57, 43 and 32; 53, 63 and 6 and 160, 150 and 67, all in respective order An optimum sulphur dose of 44.3 kg/ha produced increased bulb yield (over no S) worth Rs 34892 over fertilizer cost giving B:C ratio of 31.5:1. Utilization of sulphur added at 15, 30 and 45 kg/ha rates was 24.1, 19.3 and 15.7% by the garlic crop; and 29.6. 24.5 and 9.02% by the following maize crop, thus, adding up to 54.1, 43.8 and 24.9% by the cropping sequence, all in respective order.  相似文献   

19.
Environmental Geochemistry and Health - The paper presents the results of the model experiment on spring barley (Hordeum vulgare L.) grown in polluted soil. The influence of separate and combined...  相似文献   

20.
A field experiment was conducted for two years to find out best water management practice to mitigate methane emission from the rice-fields. Continuously flooded conditions yielded two major flushes of methane emission and on an average resulted in relatively higher rate of methane emission (2.20 and 1.30 mg m(-2) hr(-1), respectively in 2005 and 2006) during the kharif season. The methane flux was reduced to half (1.02 and 0.47 mg m(-2) hr(-1), respectively in 2005 and 2006) when rice fields were irrigated 2-3 days after infiltration of flood water into the soil. Irrigating the field at 0.15 bar matric potential reduced seasonal methane flux by 60% (0.99 and 0.41 mg m(-2) hr(-1), respectively in 2005 and 2006) as compared to completely flooded conditions, without any decline in grain yield (60 q ha(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号