首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Statolith microstructure was studied in 56 Ancistrocheirus lesueurii (25 to 423 mm of mantle length, ML) caught in the central-east Atlantic. Statolith growth increments were grouped into three main growth zones, distinguished mainly by increment width. The second transition in the statolith microstructure (from Zone 2 to Zone 3) coincides with the life history shift from epipelagic and upper mesopelagic to a bathyal habitat. Second-order bands (mean 27.65 growth increments) and sub-bands (mean 13.6 growth increments) within statolith microstructure appeared to be related to the lunar cycle. Striking sexual dimorphism is reflected in the age and growth rates: males live ca. 1 yr, while females only start maturing at this age and obviously live >1.5 yr. A. lesueurii is a slow growing squid, attaining 25 to 30 mm ML at the age of 100 d. After ontogenetic migrations into bathypelagic waters at ML > 30 to 35 mm, growth rates gradually decrease to the minimum known values for squids. Based on back-calculated hatching dates, A. lesueurii hatches throughout the year with a peak between November and March. Received: 28 August 1996 / Accepted: 31 January 1997  相似文献   

2.
Fluoride in Antarctic marine crustaceans   总被引:2,自引:0,他引:2  
M. Sands  S. Nicol  A. McMinn 《Marine Biology》1998,132(4):591-598
The concentration of fluoride in the body parts of a range of Antarctic crustaceans from a variety of habits was examined with the aim of determining whether fluoride concentration is related to lifestyle or phylogenetic grouping. Euphausiids had the highest overall fluoride concentrations of a range of Antarctic marine crustaceans examined; levels of up to 5477 μg g−1 were found in the exoskeleton of Euphausia crystallorophias. Copepods had the lowest fluoride levels (0.87 μg g−1 whole-body); some amphipods and mysids also exhibited relatively high fluoride levels. There was no apparent relationship between the lifestyle of the crustaceans and their fluoride level; benthic and pelagic species exhibited both high and low fluoride levels. Fluoride was concentrated in the exoskeleton, but not evenly distributed through it; the exoskeleton of the head, carapace and abdomen contained the highest concentrations of fluoride, followed by the feeding basket and pleopods, and the eyes. The mouthparts of E.␣superba contained almost 13 000 μg F g−1 dry wt. Antarctic krill tail muscle had low levels of fluoride. After long-term (1 to 5 yr) storage in formalin, fluoride was almost completely lost from whole euphausiids. Received: 1 April 1998 / Accepted: 29 July 1998  相似文献   

3.
Five pelagic Halobates species occupy a vast area from 40 north to 40 south in the three major oceans. Oceanic diffusion, constantly acting to disperse these insects, must be an important factor in determining their life history and distribution. We investigated the effects of oceanic diffusion on the following aspects of these insects. (1) The estimated radius of a patch of Halobates could be expanded by oceanic diffusion alone from an initial point of origin to 1250 km in 60 d. This distance is about 1/12 of the maximum distributional range of H. micans in the Pacific Ocean. Mutual encounter rates due to oceanic turbulence could be as high as 11 d−1 even at low population densities (100 ind km−2). This suggests that individuals from their original habitat could find mates even when they had been carried a long distance. Thus, extensive gene mixing may occur over the whole range of a species' distribution. (2)␣Estimated growth rates are rather low (0.0026 to 0.0079 d−1) compared with those of other insects. However, they are offset by a long life span (over 90 d) and an extended oviposition period (perhaps over 2␣months). Thus, pelagic Halobates spp. appear to have adopted a strategy of slow growth and prolonged longevity to cope with living in an unstable physical environment that is constantly disturbed by storms and winds. Received: 5 February 1995 / Accepted: 30 October 1997  相似文献   

4.
R. Villanueva 《Marine Biology》2000,136(3):449-460
Over the past decade, statolith interpretation has resulted in a major advance in our knowledge of squid population-dynamics, but the way in which environmental conditions affect the statolith increment-deposition ratio remains virtually unknown. The object of the present study was to determine the effect of temperature on this process, using tetracycline marks to validate statolith growth in Loligo vulgaris Lamarck, 1798 under rearing conditions equivalent to severe winter (11 °C) and summer (19 °C) temperature regimes. Tetracycline marking was performed every 10 d (at 10, 20, 30, 40, 50 and 60 d of age). The newly hatched squid paralarvae were slightly smaller in summer than those hatched in winter. Survival rates were similar in both cultures, but growth rates (wet mass) of summer squids were double those in winter. At hatching, statoliths were already longer in the summer squids, and growth rates were 2% d−1 as opposed to 0.9% d−1 for winter statoliths. For the dorsal dome area of the statolith, where more increment counts were made, statolith growth was of 3.25 μm d−1 in summer, and daily increment deposition was confirmed in 87% of the statoliths. The slow growth of statoliths at winter temperatures yielded a mean growth of 1.1 μm d−1– insufficient to discern the increments using light microscopy. Subsequent SEM observation enabled only 21% of the winter statoliths to be read; these also indicated a deposition rate of one increment d−1. Since the life span of L. vulgaris is ≃1 yr, squids will experience at least one winter during their life cycle, and this might be visible on the statolith. Received: 28 June 1999 / Accepted: 20 December 1999  相似文献   

5.
The euphausiid Euphausia crystallorophias Holt and Tattersall, 1906 is considered to be a neritic species. It has been found in greatest abundance along the Antarctic continental margins, often in association with regions of pack ice. Although E. crystallorophias has been observed at some islands to the west of the Antarctic Peninsula, the species has not previously been reported from islands of the maritime- or sub-Antarctic further north. During an oceanographic transect in November 1997 from South Georgia to the South Sandwich Islands, acoustic observations revealed a dense, discrete pelagic target at 50 m. The target was fished and was found to be an aggregation of small E. crystallorophias. The fishing location (54.48°S; 30.61°W) was >1500 km from the Antarctic continent, and >250 km from the nearest land, in water of several thousands of metres depth – clearly a non-neritic environment. Examination of hydrographic data revealed that the E. crystallorophias swarm had been located within a fast-flowing band of water that had characteristics of water found near the Antarctic Peninsula. This band was ≃150 km wide, and had a speed ranging from 9 to 22 km d−1 in a north-easterly direction. The possible origins of this E. crystallorophias swarm are explored in the light of the eddy-dominated current patterns prevalent in the Weddell–Scotia Confluence region, and with reference to published growth-rate estimates for the species. We discuss the potential for long-distance dispersal of E. crystallorophias and other neritic species in fast current jets, and examine how such oceanographic features could facilitate long-distance dispersal, colonization, and gene flow. Received: 23 November 1998 / Accepted: 25 March 1999  相似文献   

6.
Electrona antarctica and Bathylagus antarcticus are dominant fishes in the Southern Ocean pelagic ecosystem with disparate life histories, making them excellent subjects for comparative studies. Twenty-one indices of nutritional condition were compared in both species by observing changes in each index as it varied spatially and temporally in association with the marginal ice-zone bloom in the northwestern Weddell Sea. E. antarctica and B. antarcticus exhibited very different patterns of response to the bloom. Nutritional condition increased in 11 of 21 measures in E. antarctica, suggesting that it was in poorer condition at ice-covered stations and in greatly improved condition in post-bloom, open-water stations. The data, combined with a few observations of larvae, indicate that E. antarctica increases feeding before the spring bloom, rapidly building stores of lipid, which are probably used for spawning. In contrast, only three measures of condition were variable in B. antarcticus, and lipid actually decreased from ice-covered to open water. RNA:DNA values increased in open water, coinciding with an increase in food volume present in their guts. These observations, coupled with observations of larvae in ice-covered stations, suggest that B. antarcticus possesses sufficient energetic stores to spawn prior to the bloom, so that larvae are able to fully utilize available resources associated with the spring bloom. Increased somatic growth, as indicated by RNA:DNA, may not begin until later, when the bloom was beginning to decline. Earlier work, which suggested that the deeper living, non-migrating species, like B. antarcticus, would not be affected by the bloom until after shallower, migratory species, like E. antarctica, is supported. Of the assays tested, RNA:DNA appeared to be the most sensitive. The combined assessment of many measures including biochemical, compositional, dietary, and age estimates from single specimens is possible if the samples are treated with sufficient care. The reliance upon a single measure to help interpret the ecology of a species, especially in nekton-sized species, is not as effective as techniques used in combination. Received: 12 January 2000 / Accepted: 16 August 2000  相似文献   

7.
Post-prandial increases in metabolism, the specific dynamic action of feeding (SDA), were evaluated in the Antarctic limpet Nacella concinna. O2 consumption rose to a peak value 2.3 times higher than pre-feeding standard metabolic rates. This peak rise is low for marine ectotherms, but is typical of polar species. There were three peaks in the SDA, the first lasted only for the 1st day, was caused by handling, and was minor. The second was the major peak. It lasted from post-prandial days 4–9 inclusive, and accounted for around 70% of the SDA response. The third peak lasted from day 11 to day 15 and accounted for 30% of the total SDA. A 15-day SDA is much longer than values for temperate species, but is again typical for polar marine ectotherms. NH3 excretion declined post-prandially from around 0.4 μmol animal−1 h−1 to values between 0.025 and 0.223 μmol animal−1 h−1 throughout the SDA. The total O2 consumed in the SDA was 90.2 μmol O2, which converts to 44.7 J of energy. This was 45–50% of the energy consumed in the meal (93.5 J). Pre-feeding O:N ratios, after 26 days without food, were around 1, indicating protein as the sole metabolic substrate prior to initiating the SDA. After feeding, O:N ratios rose to between 2.5 and 19, indicating significant use of lipid or carbohydrate from the food. Experiments were conducted in ambient seawater with enhanced levels of Sr (SrCl added at 800 mg kg−1), and limpets were fed microalgal films also grown in enhanced Sr media. Sr incorporated in the shells during the experiment allowed the measurement of shell increments deposited during the SDA. Between five and eight microgrowth bands were present in the Sr-enhanced increments, which was similar to the number of days in the second SDA peak. The mean shell increment laid down was 17.6 μm. Estimating tissue deposition from measured growth increments and published ash-free dry mass (AFDM) to length relationships produced a value of 0.81 mg AFDM, which converted to 26.4 J of energy, or 25–30% of the energy ingested in the meal. Estimates of growth increments associated with a single SDA have not previously been possible. Overall energy used in the SDA and tissue deposition accounted for 75–80% of the energy ingested; the remainder was probably accounted for by unmeasured costs such as mucus production. Received: 6 June 2000 / Accepted: 20 September 2000  相似文献   

8.
The transparent goby Aphia minuta (Risso, 1810) is one of the main target species of the small-scale fishery off the Island of Majorca. Otolith microstructure and length-frequency analysis were used to study the age and growth of this species during the 1982/1983 and 1992/1993 fishing seasons. Daily periodicity of increment formation was determined by experiments with marked otoliths in individuals maintained in captivity. The length range of the catches during the 11 yr period was between 12 and 49 mm, with a main distribution (89%) between 24 and 40 mm. Otolith age-readings indicate that the population exploited in the commercial fishery consists of seven age-groups (2 to 8 mo old), with a very high proportion of individuals (95%) between 3 and 6 mo old. Population growth-curves revealed no differences between males and females. The growth parameters for the whole population are: asymptotic length, L = 53.69 mm; growth coefficient, K = 2.23 yr−1; theoretical age at length zero, t 0 = −0.005 yr. Those individuals of A. minuta caught in Majorca during the winter period reached a maximum age of 7 or 8 mo. Received: 30 December 1996 / Accepted: 16 April 1997  相似文献   

9.
Eleven mesopelagic fish species from the Weddell/Scotia Sea region of the Antarctic captured during the austral spring 1983, austral fall 1986, and austral winter 1988, were analyzed for proximate composition. Water, ash level, protein, lipid and carbohydrate were examined in relation to depth of occurrence and season. No depth-related trends were evident, primarily due to a low species diversity and minimal differences in those species' vertical distributions. The Antarctic speciesElectrona antarctica showed a significant increase in lipid level (% wet wt and % ash-free dry wt) between spring, fall and winter. The increase may signify an accumulation over the productive season, possibly as a reserve for the winter months. Lipid levels (% wet wt and % ash-free dry wt) were significantly lower in the Weddell Sea specimens examined in this study than in previously examined identical and congeneric species taken during the same season from a more productive near-shore Antarctic region. Comparisons with congeners and confamilials from tropical-subtropical and temperate systems revealed variable trends. The Antarctic speciesE. antarctica andCyclothone microdon had lower water and protein (% wet wt) levels than similar species from tropical-subtropical or temperate regions. Lipid levels of the two species are similar to temperate individuals, while energy levels are slightly higher. In contrast, species of the genusBathylagus show no trends in composition as a function of latitude. Differences in productivity, water-column temperature-structure, and seasonality are important considerations when examining trends among mesopelagic species.  相似文献   

10.
Rates of respiration and protein synthesis were measured during embryonic and larval development of Antarctic asteroids with different life-history modes (non-feeding and feeding larvae: Acodontaster hodgsoni, Porania antarctica, Odontaster meridionalis). Patterns of respiration for these species all show an increase during embryogenesis, with subsequent maintenance of routine respiration (“starvation resistance”), even in the absence of food for ~4 months (O. meridionalis). Fractional rates of protein synthesis (i.e., rate per unit mass of whole-body protein content) in the Antarctic larvae are essentially identical to those of temperate species. Larvae of O. meridionalis had an average fractional synthesis rate of 0.52% ± 0.05 h−1 at −1.0°C, which is comparable to the temperate asteroid Asterina miniata at 0.53% ± 0.14 h−1 at 15°C. For embryos of the asteroids A. hodgsoni and P. antarctica, fractional rates of protein synthesis (~0.2% h−1) also are comparable to those reported for embryos of temperate echinoderm species. While rates of synthesis are high, rates of protein deposition are relatively low (percent of protein synthesized that is retained for growth). During a ~4 month growth period for larvae of O. meridionalis, the average protein depositional efficiency was 5.2%. This contrasts with higher rates of depositional efficiency reported for similar developmental stages of temperate echinoderm species. The biological significance of maintaining high rates of macromolecular synthesis for species with low rates of cell division and low protein depositional efficiencies is intriguing in the context of understanding the mechanistic bases of extended life spans and dispersal potential in response to changing Antarctic environments.  相似文献   

11.
Microstructure of settlement-marks in the otoliths of tropical reef fishes   总被引:6,自引:0,他引:6  
The morphology and ultrastructure of the otolith settlement-mark was examined in 44 tropical reef-fish species spanning nine families. A classification scheme based on similar otolith characteristics is presented. Three major categories are identified based on changes in increment width and optical qualities of the settlement-mark. Of the 44 species examined, 39 possessed “abrupt” settlement-marks (Type I) characterised by a rapid decrease in increment width (up to 50% reduction) over settlement. Type I settlement-marks were found in all nine families examined. The 39 species spanned the whole range of possible larval durations (Pomacentrus moluccensis, 15 d ± 0 SE; Naso hexacanthus, 91.2 d ± 2.97 SE). Four of the 44 species possessed “zonal” settlement-marks (Type II), featuring a band of increments that are wider than pre-settlement increments. Species in this category are the labrids Corisaygula, Thalassoma bifasciatum, T. lunare and an unidentified acanthurid (Acanthurus sp. 2). One species of acanthurid (N. brevirostris) possessed a “gradual” settlement-mark (Type III), manifest as a gradual decrease in increment width during the settlement period. A possible fourth type was identified from the literature. Gnatholepis thompsoni and Coryphopterus glaucofraenum possessed a settlement-mark with increment widths that increased post-settlement. Available data suggest a poor relationship between the structure of the settlement-mark and the magnitude of metamorphosis (previously reported as internal and external morphological change). Evidence suggests that the increment profile over early development and the increment transitions associated with the settlement event are taxon-specific and may enable late-larval stage fishes to be identified to species level. Received: 21 May 1997 / Accepted: 3 February 1999  相似文献   

12.
The growth rates of the morphologically similar scyllarid lobsters Ibacus peronii (Leach, 1815) and I. chacei (Brown and Holthuis, 1998) are described using data from a tag/recapture study and from tagged lobsters kept in captivity. Within particular size classes, we found no differences in moult increments between male and female I. peronii nor between male and female I. chacei. Small individuals of both species always had larger moult increments than larger individuals. For I. peronii, females moulted more frequently than males, and smaller size classes moulted more frequently than larger size classes. Female I. peronii therefore grew more quickly than males and reached their estimated size at sexual maturity (51 mm carapace length) after ∼2 yr. Moulting of I. peronii was seasonal, with most lobsters (96.3%) moulting between October and January. We found no differences in growth rates of I. peronii at two locations along the east coast of Australia: Coffs Harbour in New South Wales (30°18′S; 153°08′E), and Lakes Entrance in Victoria (37°53′S; 148°00′E). For I. chacei, we found no differences in the frequency of moulting between males and females and, because we also found no differences in the moult increments between males and females, the growth rates of both sexes were the same. Received: 14 August 1999 / Accepted: 20 January 2000  相似文献   

13.
We analysed growth of the Antarctic bryozoan Melicerita obliqua (Thornely, 1924) by x-ray photography and stable isotope analysis. M. obliqua colonies form one segment per year, thus attaining maximum length of about 200 mm within 50 years. In the Weddell and Lazarev Seas, annual production/biomass ratio of M. obliqua is 0.1 yr−1, which is in the range of other Antarctic benthic invertebrate populations. Production amounts to 3.34 mg Corg m−2 yr−1 and 90.6 mg ash m−2 yr−1 on the shelf (100 to 600 m water depth), and to 0.13 mg Corg m−2 yr−1 and 36.8 mg ash m−2 yr−1 on the slope (600 to 1250 m water depth). Received: 27 February 1998 / Accepted: 8 May 1998  相似文献   

14.
The cladoceran Diaphanosoma celebensis Stingelin is reported on for the first time from Indian waters (Mandovi estuary, Goa). Amictic females were maintained in the laboratory (temperature 24 ± 1 °C and salinity 17 psu) for three successive generations in order to follow the parthenogenetic reproductive behaviour, growth, survival and neonate production. The mean life span and body length of adult females in the three generations showed some variations and ranged from 9 to 12.5 d and 842 to 932 μm, respectively. The mean length of the neonates produced also varied (283 to 446 μm) in the three generations. Cladoceran preference for three phytoplankton food sources, i.e. Isochrysis galbana (Parke), Chaetoceros calcitrans (Paulsen) and Tetraselmis gracilis (Kylin), was determined. Growth was faster in the initial stage with all three diets but slowed down in later life. Increased food concentrations resulted in higher neonate production but reduced the life span of females. However, long-term feeding experiments revealed that the percentage survival was high with I. galbana and low with C. calcitrans. Received: 23 June 1999 / Accepted: 20 September 1999  相似文献   

15.
The Antarctic marine ecosystem changes seasonally, forming a temporal continuum of specialised niche habitats including open ocean, sea ice and meltwater environments. The ability for phytoplankton to acclimate rapidly to the changed conditions of these environments depends on the species’ physiology and photosynthetic plasticity and may ultimately determine their long-term ecological niche adaptation. This study investigated the photophysiological plasticity and rapid acclimation response of three Antarctic diatoms—Fragilariopsis cylindrus, Pseudo-nitzschia subcurvata and Chaetoceros sp.—to a selected range of temperatures and salinities representative of the sea ice, meltwater and pelagic habitats in the Antarctic. Fragilariopsis cylindrus displayed physiological traits typical of adaptation to the sea ice environment. Equally, this species showed photosynthetic plasticity, acclimating to the range of environmental conditions, explaining the prevalence of this species in all Antarctic habitats. Pseudo-nitzschia subcurvata displayed a preference for the meltwater environment, but unlike F. cylindrus, photoprotective capacity was low and regulated via changes in PSII antenna size. Chaetoceros sp. had high plasticity in non-photochemical quenching, suggesting adaptation to variable light conditions experienced in the wind-mixed pelagic environment. While only capturing short-term responses, this study highlights the diversity in photoprotective capacity that exists amongst three dominant Antarctic diatom species and provides insight into links between ecological niche adaptation and species’ distribution.  相似文献   

16.
K. Reid 《Marine Biology》2001,138(1):57-62
 Antarctic krill Euphausia superba has a central role in the ecosystem of the Southern Ocean and knowledge of its growth rate is central to determining the factors influencing population dynamics. The length of Antarctic krill in the diet of Antarctic fur seals Arctocephalus gazella at South Georgia revealed a consistent increase in size between ca. 42 and ca. 54 mm over the period October–March, indicating growth rates much higher than predicted by existing models. Geographical variation in growth rate may result in 2-year-old krill at South Georgia attaining the same size as 3-year-old krill in the Antarctic Peninsula region. The effect of geographical variation in growth rate on the population structure of krill has important implications for comparing the fate of individual cohorts over large scales and in the interpretation of krill life-cycles. Received: 20 May 2000 / Accepted: 11 August 2000  相似文献   

17.
The euryalinid brittle-star (snake star) Astrobrachion constrictum (Farquhar) lives coiled around the branches of black coral (Antipathes fiordensis) colonies. Twenty-two vertical transects, 10 m wide by 30 m deep, were swum in Doubtful Sound over a 2.5 yr period from 1993 to 1995. Numbers, disc diameters and colour morphotypes of brittle-stars inhabiting coral colonies were recorded. 36.3% of the coral colonies >200 mm tall (n = 292) hosted ≥1 Astrobrachion constrictum (range 0 to 12). Overall, the population was patchily distributed on the available coral habitat. The dark red colour morphotype of A. constrictum was most common (87%, n = 279) followed by the yellow, striped, and then spotted varieties. The population was comprised mainly of large (≥10 mm disc diam) individuals, and juveniles were rarely encountered, indicating low rates of recruitment or a high mortality of recruits. Disc-diameter data gathered from this and previous studies indicated that growth in A. constrictum is initially rapid, with individuals reaching a disc diameter of 15 mm in ≃2.5 yr; growth decreases with age, as in other deep-sea ophiuroids. Growth rate within years, however, was not constant, with faster growth in the spring/summer. Maximum size for A. constrictum is reached in ≃8 yr at ˜23 mm disc diam. Anecdotal evidence indicates that A. constrictum may not be confined solely to black coral colonies. Received: 25 September 1996 / Accepted: 16 October 1996  相似文献   

18.
D. Liang  S. Uye 《Marine Biology》1997,128(3):415-421
Population dynamics and production of the egg-carrying calanoid copepod Pseudodiaptomus marinus were studied for a year in Fukuyama Harbor, a eutrophic inlet of the Inland Sea of Japan. This species was perennial, with a large numerical peak in June and small peaks in September/October and November/December. During the study period, at least 11 generations could be detected. For each generation, the stage-specific survival from egg to Copepodite Stage (C) V was determined; it was very high during early life stages (egg to NIII), and gradually decreased beyond. On average, 94% of eggs recruited into NIII, which is strongly contrasted with very high (>ca. 90%) mortality during the corresponding stages for free-spawning copepods, i.e. Acartia omorii, Centropages abdominalis and Paracalans sp. This demonstrates that the egg-carrying strategy has a great advantage to reduce mortality in egg stage. The biomass of this species showed marked seasonal variations largely in parallel with numerical abundance. The instantaneous somatic growth rate increased linearly with temperature. The population production rate was estimated as the sum of somatic growth of larval stages and egg production of adult females; the annual integration was 51.0 mg C m−3 yr−1 or 0.38 g C m−2 yr−1. Received: 11 November 1996 / Accepted: 7 December 1996  相似文献   

19.
An allozyme survey, using starch-gel electrophoresis, was carried out on eight populations of the Antarctic nemertean worm Parborlasia corrugatus (McIntosh, 1876) collected from locations around the South Orkney Islands, Antarctica. These populations were separated by distances in the order of tens of kilometres. Genetic variation was estimated over 22 enzyme loci for all populations examined, giving an observed heterozygosity of 0.142. This was much lower than the expected heterozygosity (H e  = 0.201), and it was found that there was a significant deficiency of het‐erozygotes across four enzyme loci ( p ≤ 0.01). A more detailed examination of this deficiency of heterozygotes was undertaken for the six populations and six variable enzyme loci for which the most complete data sets existed. A significant deficiency of heterozygotes was found at the enzyme locus Odh-1 for four of the six populations examined ( p ≤ 0.01). Mean F is (0.240) indicated a significant ( p ≤ 0.01) within-population component of the heterozygote deficiency estimated for the six populations sampled, and this was mainly due to the␣Ap-1, Odh-1 and Pgm-1 loci. The mean F st value (0.036) was also significant ( p ≤ 0.01), indicating a degree of genetic differentiation between populations. The observed levels of genetic differentiation between populations of P. corrugatus and the significant heterozygote deficiencies were unexpected, because this species has been reported to have a long-lived planktotrophic larva. It is hypothesised that recruitment of P. corrugatus in the South Orkney Islands originates from genetically distinct populations located in the Weddell Sea and to the west of the Antarctic Peninsula. Shifts in the relative position of the Weddell Sea Front, Weddell–Scotia Confluence and Scotia Front, relative to the South Orkney Islands, provide a mechanism for variation in the origin of recruits over time. Received: 24 July 1997 / Accepted: 31 October 1997  相似文献   

20.
The circumpolar nudibranch Tritoniella belli Eliot occurs in abundance in shallow-water benthic communities of McMurdo Sound, Antarctica. Density estimates based on belt transects averaged collectively 0.46 individuals m−2 at three study sites between depths of 6 and 30 m in November 1996. At two of the sites, population densities increased linearly between 18 and 30 m depth (up to 0.7 and 1.15 individuals m−2 at 30 m depth). Individuals at all sites were rare or absent at depths shallower than 12 m. Size frequencies of individuals at the sites were similar, and a pooled analysis revealed a unimodal distribution skewed highly towards juvenile size classes. This suggests both recent recruitment and constant rates of mortality across size classes. The relationship between foot length and wet weight best fits an exponential growth equation, indicative of an allometric growth pattern. Distribution of T. belli in the field suggests that it is a habitat and diet generalist. Potential invertebrate predators include sea anemones and seastars, both of which co-occur in abundance in McMurdo Sound. Laboratory experiments indicate that the sea anemone Isotealia antarctica can capture and ingest T. belli. However, 70% of T. belli that are captured escape from the tentacles or, following ingestion, are rejected from the gastrovascular cavity. The seastars Odontaster validus, Perknaster fuscus, and Acodontaster conspicuus, avoid contact with T. belli, but if forced into contact with mantle tissues, retract their tube-feet. Mucus secreted from the mantle tissues, coated on to the tips of glass rods, and presented to seastar tube-feet, causes significantly longer tube-foot retraction times than control rods. Moreover, pieces of freeze-dried krill coated with mantle mucus are consumed significantly less often than untreated control pieces of krill by a benthic scavenging fish (Pseudotrematomas bernacchi). Employing seastar tube-foot retractions as a bioassay, we found the bioactive compound(s) are soluble in ethyl acetate, indicating they are lipophilic or moderately hydrophilic in nature. Chemical defenses in the mucus of T. belli probably contribute to its high abundance in Antarctic benthic communities. Received: 6 October 1997 / Accepted: 24 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号