首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research paper aims at establishing baseline PM10 and PM2.5 concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM2.5) and coarser fractions (PM10-2.5) to PM10 fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM10 concentration was 304 μg/m3, which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM10 concentration was due to fine fraction (PM2.5) released by vehicular exhaust. The 24h average PM2.5 concentration was found 179 μg/m3, which is exceeded USEPA and EU standards of 65 and 50 μg/m3 respectively for the winter. India does not have any PM2.5 standards. The 24 h average PM10-2.5 concentrations were found 126 μg/m3. The PM2.5 constituted more than 59% of PM10 and whereas PM10-PM2.5 fractions constituted 41% of PM10. The correlation between PM10 and PM2.5 was found higher as PM2.5 comprised major proportion of PM10 fractions contributed by vehicular emissions.  相似文献   

2.
The Fine Resolution Atmospheric Multi-pollutant Exchange Model was used to calculate the spatial distribution and chemical composition of PM10 concentrations for two geographically remote countries in Europe—the UK and Poland—for the year 2007. These countries are diverse in terms of pollutant emissions as well as climate conditions. Information on the contribution of natural and anthropogenic as well as national and imported particles in total PM10 concentrations in both countries is presented. The paper shows that the modelled national annual average PM10 concentrations, calculated for the entire country area, are similar for the UK and Poland and close to 12 μg m?3. Secondary inorganic aerosols dominate the total PM10 concentrations in Poland. Primary particulate matter has the greatest contribution to total PM10 in the UK, with large contribution of base cations. Anthropogenic sources predominate (81 %) in total PM10 concentrations in Poland, whereas natural prevail in the UK—hence, the future reduction of PM10 air concentrations by emissions reduction could be more difficult in the UK than in Poland.  相似文献   

3.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

4.
Tehran, the capital city of Iran, is an important industrial and commercial center. This city is one of the worst cities in the world in terms of air pollution, which is mostly due to mobile sources rather than stationary sources. Particulate matter (PM), which is a complex mixture of extremely small particles and liquid droplets, is considered as an important source of air pollution in Tehran. In this study, our objective was to study PM10, PM2.5, and PM1.0 mass and number concentrations and find the correlations of these two parameters in the west-central parts of Tehran during two consecutive warm and cold seasons. The particles collected from five stations were analyzed for their mass and number simultaneously by a laser-based Grimm dust monitor. In general, it was found that the accumulation of the PM in this region is more in the cold season. PM10 mass concentration increases almost twofold and PM2.5 and PM1.0 almost three times in this season. The mean number concentration of the particles (0.3–20 μm) was found to be almost 4.8 times in the cold season. It was also noticed that the average dimensions of the particles decrease in that season.  相似文献   

5.
This study applies backward trajectory-based statistical techniques, residence time, conditional probability and emission attraction to evaluate potential source regions of PM10 over a coastal region. PM10 episodes were selected by principal component analysis for 1998–2005 over the Kaoping air quality basin. Residence time was applied to identify potential regions in which air parcels would remain over their 6- and 12-h trajectories. Emission attraction and conditional probability were used to analyze contribution ratios of distinct emission sources to air quality stations. The PM10 episodes screen 175 days (6 % of total days) and 35.9 % of total station numbers. Residence time and emission attraction clearly identified potential areas in which backward trajectories remained during PM10 episodes and high PM10 events. Emission attraction evaluated relative contributions of various sources (stationary, line, and area) from specific jurisdictions, and provided information on specific sources for high-priority PM10 emissions reduction. The conditional probabilities of emission attraction during high PM10 events show that high values concentrated near stationary and area sources in the city of Kaohsiung.  相似文献   

6.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

7.
Assessment of indoor air quality (IAQ) in classrooms of school buildings is of prime concern due to its potential effects on student??s health and performance as they spend a substantial amount of their time (6?C7 h per day) in schools. A number of airborne contaminants may be present in urban school environment. However, respirable suspended particulate matter (RSPM) is of great significance as they may significantly affect occupants?? health. The objectives of the present study are twofold, one, to measure the concentrations of PM10 (<10  $\upmu $ m), PM2.5 (<2.5  $\upmu $ m), and PM1.0 (<1.0  $\upmu $ m) in naturally ventilated classrooms of a school building located near a heavy-traffic roadway (9,755 and 4,296 vehicles/hour during weekdays and weekends, respectively); and second, to develop single compartment mass balance-based IAQ models for PM10 (NVIAQMpm10), PM2.5 (NVIAQMpm2.5), and PM1.0 (NVIAQMpm1.0) for predicting their indoor concentrations. Outdoor RSPM levels and classroom characteristics, such as size, occupancy level, temperature, relative humidity, and CO2 concentrations have also been monitored during school hours. Predicted indoor PM10 concentrations show poor correlations with observed indoor PM10 concentrations (R 2 = 0.028 for weekdays, and 0.47 for weekends). However, a fair degree of agreement (d) has been found between observed and predicted concentrations, i.e., 0.42 for weekdays and 0.59 for weekends. Furthermore, NVIAQMpm2.5 and NVIAQMpm1.0 results show good correlations with observed concentrations of PM2.5 (R 2 = 0.87 for weekdays and 0.9 for weekends) and PM1.0 (R 2 = 0.86 for weekdays and 0.87 for weekends). NVIAQMpm10 shows the tendency to underpredict indoor PM10 concentrations during weekdays as it does not take into account the occupant??s activities and its effects on the indoor concentrations during the class hours. Intense occupant??s activities cause resuspension or delayed deposition of PM10. The model results further suggests conductance of experimental and physical simulation studies on dispersion of particulates indoors to investigate their resuspension and settling behavior due to occupant??s activities/movements. The models have been validated at three different classroom locations of the school site. Sensitivity analysis of the models has been performed by varying the values of mixing factor (k) and newly introduced parameter R c. The results indicate that the change in values of k (0.33 to 1.00) does not significantly affect the model performance. However, change in value of R c (0.001 to 0.500) significantly affects the model performance.  相似文献   

8.
By extending the method of Stedman (1998), daily dataof atmospheric concentrations of gravimetricPM10, black smoke (BS) and sulphate aerosol (SA)from national networks were analysed to determine thetrends in time of the contribution of different sources of particulate matter to total PM10 measured in central Edinburgh. Since BS is an indicator of combustion-related primary sources of particulate matter, the quantity obtained by subtraction of daily BS from daily PM10 is indicative of the contribution to total PM10 from other primary sources and from secondary aerosol. This PM10-BS statistic was regressed on SA, since SA is an indicator of variation in secondary aerosol source. For Edinburgh, SA is a considerably better indicator of PM10-BS during summer than winter (reflecting the much greater photochemical generation of secondary aerosol in summer) and there is evidence that the contribution of other secondary aerosol (presumably nitrate aerosol) has increased relative to SA between 1992 and 1997. The concentration of non-combustion primary particulate material (marine aerosol, suspended dust) to PM10 in Edinburgh has not changed over this period but is about twice that calculated as the U.K. national average. The increasing input to PM10 from secondary aerosol sources at regional rather than urban scale has important implications for ensuring local air quality compliance. The method should have general applicability to other locations.  相似文献   

9.
In this study, the relationship between inhalable particulate (PM10), fine particulate (PM2.5), coarse particles (PM2.5 – 10) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003–2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3–5 m above ground near highly trafficked and congested areas. The 24 h average PM10 and PM2.5 samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM2.5 and PM10 were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM10 and PM2.5 and inverse correlation was observed between particulate matter (PM10 and PM2.5) and wind speed. Statistical analysis of air quality data shows that PM10 and PM2.5 are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM10 and PM2.5 and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM10) and fine particulate (PM2.5) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM10 (BSM10) and benzene soluble organic fraction of PM2.5 (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.  相似文献   

10.
Review on the annual PM10 concentrations over a 10-year period shows that Macau is subjected to severe fine particulate pollution. Investigations of its variation in monthly and daily time scales with the local meteorological records reveal further details. It is found that a distinct feature of the Asian monsoon climates, the changes of wind direction, mainly controls the general trend of PM10 concentration in a year. The monsoon driven winter north-easterly winds bring upon Macau dry and particle enriched air masses leading to a higher concentration in that period while the summer south-westerly winds transport humid and cleaner air to the region leading to a lower PM10 value. This distinct seasonal feature is further enhanced by the lower rainfall volume and frequency as well as mixing height in winter and their higher counterparts in summer. It is also found that the development of tropical cyclones near Macau could also impose episode like PM10 concentration spikes due to the pre-typhoon induced stagnant air motion followed by the swing of wind direction to the northerly.  相似文献   

11.
A source apportionment study was carried out to estimate the contribution of motor vehicles to ambient particulate matter (PM) in selected urban areas in the USA. Measurements were performed at seven locations during the period September 7, 2000 through March 9, 2001. Measurements included integrated PM2.5 and PM10 concentrations and polycyclic aromatic hydrocarbons (PAHs). Ambient PM2.5 and PM10 were apportioned to their local sources using the chemical mass balance (CMB) receptor model and compared with results obtained using scanning electron microscopy (SEM). Results indicate that PM2.5 components were mainly from combustion sources, including motor vehicles, and secondary species (nitrates and sulfates). PM10 consisted mainly of geological material, in addition to emissions from combustion sources. The fractional contributions of motor vehicles to ambient PM were estimated to be in the range from 20 to 76% and from 35 to 92% for PM2.5 and PM10, respectively.  相似文献   

12.
The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM10 during yellow sand periods. In order to estimate PM10 enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM10 level was high, and the CO and NO x levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM10 levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM10 enhancement during the YS periods is then calculated by subtracting the simulated PM10 from the observed PM10 levels. Based on our calculations, the PM10 enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM10 were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM10 enhancement caused by yellow sand.  相似文献   

13.
In recent years, central environmental protection inspection (CEPI) has been a major policy innovation in the field of Chinese environmental governance. Based on panel data on the daily air quality of Chinese cities, this paper mainly uses a difference-in-differences (DID) approach to conduct an empirical analysis of the relationship between CEPI and the air quality governance performance of Chinese local governments. There are large differences in the impact of CEPI on different air quality indicators. Controlling for a series of variables, we found that CEPI significantly reduced the air quality index (AQI) and concentrations of pollutants including PM2.5, PM10, SO2 and NO2 and that it significantly increased the concentration of O3; however, it had no significant effect on the concentration of CO. Furthermore, we complemented the quantitative analyses with qualitative evidence gathered from an in-depth interview. Based on the qualitative evidence collected, CEPI indeed plays a role in improving the environmental protection performance of regular environmental governance. Notably, CEPI achieved better and sustainable results in improving air quality through the underlying mechanism of promoting regular governance by campaign-oriented governance in the internal hierarchical system. This article not only provides a marginal empirical contribution by providing new quantitative evidence but also helps reveal the underlying mechanism of promoting regular governance.  相似文献   

14.
中国城市细颗粒物(PM_(2.5))空气质量达标率低,且城市间的污染程度差异较大。为了整体改善PM_(2.5)空气质量,需要针对不同污染程度的城市,制定分阶段改善目标加以考核和管理,研究探讨了城市PM_(2.5)空气质量改善目标体系及不同污染程度城市各阶段目标值。首先运用文献综述法、国内外对比分析法梳理评述了WHO、欧美等发达国家PM_(2.5)的空气质量标准和达标要求,提出中国城市PM_(2.5)空气质量改善的考核目标体系,包括PM_(2.5)浓度目标值或下降率、严重污染天数上限、达标天数下限等指标。通过历史数据分析法研究了2000—2013年美国、日本一些城市和2013—2016年中国74个环保城市PM_(2.5)年均浓度的变化趋势,推论出中国城市PM_(2.5)年均浓度年均下降5%~8%是可能实现的;结合环境保护部及各省市PM_(2.5)污染防治规划,提出PM_(2.5)空气质量改善目标的设定原则和达标天数的回归计算方法;以2014年114个城市PM_(2.5)年均浓度为基数,计算得出不同污染程度城市2020、2025、2030年PM_(2.5)年均浓度年下降率和达标天数的目标值。  相似文献   

15.
广州市近年空气质量现状及趋势分析   总被引:9,自引:3,他引:6  
为掌握广州市空气质量现状及其变化趋势,对广州市2001~2009年空气质量监测数据进行系统的分析。结果表明,近年来广州市空气质量总体良好;整体空气质量有逐步好转的趋势,尤其是SO2浓度下降明显,NO2稳中有降,PM10略有下降但2009年仍有上升趋势,且PM10超标率居于首位;污染物浓度时空分布不均匀,NO2与PM10夏季浓度较低,春冬季较高,表现出明显的季节性特征;主城区NO2浓度明显较高,但总体呈下降趋势,主城区外NO2浓度较低,但呈上升趋势。全年灰霾天数也呈现下降的趋势,变化规律与PM10浓度变化规律一致。  相似文献   

16.
基于2014—2020年重庆市中心城区北碚区环境监测数据及地面观测气象要素,分析了北碚区大气污染特征,利用KNN算法建立大气污染的评估模型,对空气质量改善效果进行评估。结果表明,重庆市中心城区北碚区的PM2.5浓度逐年呈明显下降趋势,O3浓度除夏季有一个弱的下降趋势外,其余3个季节和年平均值整体均呈上升趋势。全年以优良天气为主且呈增加趋势。O3与气温、日照时间呈正相关,与相对湿度呈负相关性,PM2.5与气温、降水及风速呈负相关。基于KNN算法对空气质量改善状况评估表明,减排对O3污染平均贡献率在-4.7%左右,对PM2.5污染平均贡献率为-52%,气象条件对O3污染的平均贡献率在17%左右,对PM2.5污染的平均贡献率在-7%左右。该大气污染评估模型能够有效地评估空气改善效果。  相似文献   

17.
利用2015—2017年春节期间东北地区主要大气污染物(PM_(10)、PM_(2.5)、SO_2、NO_2、CO和O3)质量浓度监测资料及相应气象因子(温度、湿度、风速和气压)观测资料,分析了春节期间烟花爆竹禁燃对东北地区空气质量的影响。结果表明:随着东北地区主要城市禁燃力度的增强,空气质量逐年提升,PM_(2.5)和SO_2浓度逐年大幅度下降。禁燃可明显降低城区PM_(2.5)浓度,而由于春节期间污染源整体减少,城区和城郊监测点PM_(2.5)浓度值差异减小。烟花爆竹对PM_(10)和PM_(2.5)浓度影响高于对气体污染物SO_2、NO_2和CO的影响。此外,气象条件对东北地区春节期间禁燃改善空气质量的效果也有明显影响。因此,结合春节期间的气象条件,在东北地区实施禁燃政策动态调整非常必要。  相似文献   

18.
研究采用空气质量指数法对2014—2018年洛阳市大气污染变化特征进行了分析,构建了空气污染物浓度的影响指标体系,采用灰色关联法研究了空气污染物浓度与影响因子之间的关联度,得到了影响空气污染物浓度的主要指标因子,并提出了改善洛阳市空气质量的措施。结果表明:洛阳市空气质量指数类别主要为良和轻度污染。2014—2018年空气质量为优良的天数主要出现在春季、夏季和秋季,重度污染和严重污染主要出现在冬季。2018年PM10、PM2.5、NO2、SO2和CO这5项污染物浓度随时间变化呈"V"型,污染主要集中在1—5月和11—12月。O3浓度随时间变化呈倒"V"型,污染主要集中在4—9月。研究期内PM2.5、PM10和O3是主要污染物。市区总人口、工业(综合)能源消耗量、人均生产总值、城市机动车总数、城市房屋施工面积、人均公园绿地面积、建成区绿化覆盖率和一般工业固体废物产生量等8项指标因子与PM2.5、PM10和O3的浓度表现出高关联度或较高关联度。  相似文献   

19.
依托北京市、廊坊市和保定市高密度的地面空气质量监测、气象要素监测以及PM2.5化学组分监测和后向轨迹分析等手段,对2017年上半年三地的空气质量进行分析。研究发现:三地中北京市空气质量较好,保定市较差。分污染物来看,保定市SO2浓度水平明显高于廊坊市和北京市,颗粒物PM10和PM2.5也呈现保定市最高、北京市最低的规律。从污染物日变化来看,CO、SO2、NO2、PM10和PM2.5呈双峰型分布,O3呈单峰型分布。从区域整体分布规律来看,PM2.5和SO2呈现明显的"南高北低"特征。PM2.5化学组分分析结果表明:1—4月燃煤对该区域空气质量的影响较大,5—6月机动车排放的影响更为凸显。后向轨迹分析结果表明:在2017年上半年到达北京市的气流中有24%来自于北京市南部,且这些气流多为低空传输,表明区域传输对于北京市空气质量具有一定的影响。  相似文献   

20.
Simultaneous indoor and outdoor PM10 and PM2.5 concentration measurements were conducted in seven primary schools in the Athens area. Both gravimetric samplers and continuous monitors were used. Filters were subsequently analyzed for anion species. Moreover ultrafine particles number concentration was monitored continuously indoors and outdoors. Mean 8-hr PM10 concentration was measured equal to 229 ± 182 μg/m3 indoors and 166 ± 133 μg/m3 outdoors. The respective PM2.5 concentrations were 82 ± 56 μg/m3 indoors and 56 ± 26 μg/m3 outdoors. Ultrafine particles 8-h mean number concentration was measured equal to 24,000 ± 17,900 particles/cm3 indoors and 32,000 ± 14,200 particles/cm3 outdoors. PM10 outdoor concentrations exhibited a greater spatial variability than the corresponding PM2.5 ones. I/O ratios were close or above 1.00 for PM10 and PM2.5 and smaller than 1.00 for ultrafine particles. Very high I/O ratios were observed when intense activities took place. The initial results of the chemical analysis showed that accounts for the 6.6 ± 3.5% of the PM10 and for the 3.1 ± 1.4%.The corresponding results for PM2.5 are 12.0 ± 7.7% for and 3.1 ± 1.9% for . PM2.5 indoor concentrations were highly correlated with outdoor ones and the regression line had the largest slope and a very low intercept, indicative of no indoor sources of fine particulate . The results of the statistical analysis of indoor and outdoor concentration data support the use of as a proper surrogate for indoor PM of outdoor origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号