首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and co-trimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As3+ followed by Cr6+ were transferred more frequently.  相似文献   

2.
Escherichia coli O157:H7 and Salmonella are pathogenic microorganisms that can cause severe gastrointestinal illness in humans. These pathogens may be transmitted in a variety of ways, including food and water. The presence of Salmonella and E. coli O157:H7 in surface waters constitutes a potential threat to human health when used for either drinking or recreation. As with most waterborne pathogens, Salmonella and E. coli O157:H7 are difficult to detect and enumerate with accuracy in surface waters due to methodological limitations. The aim of this study was to develop a protocol for the detection of Salmonella spp., E. coli O157:H7 and E. coli virulence genes (stx 1, stx 2 and eae) in water using a single enrichment step and PCR. In spiked water samples, PCR results showed high sensitivity (<3 CFU/L) for both microorganisms. The protocol developed in this study has been applied in different surface waters in association with microbiological and physical analysis. The frequency of PCR positive samples was 33% for Salmonella and 2% for E. coli O157:H7 producing intimin (eae) and Shiga-like toxin I (stx 1). Moreover, the finding of amplicons corresponding to eae and stx 1 genes in the absence of E. coli O157:H7 suggested the possible presence of other pathogenic bacteria that carry these genes (e.g. EHEC, Shigella strains). The results obtained showed that the developed protocol could be applied as a routine analysis of surface water for the evaluation of microbiological risks.  相似文献   

3.
Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF?+?CO2, NF air and 550?±?50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO?+?CO2, NF air, 25–35 ppb O3 and 550?±?50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500?±?50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.  相似文献   

4.
Six Indian cultivars of Vigna radiata L. (HUM-1, HUM-2, HUM-6, HUM-23, HUM-24 and HUM-26) were exposed with ambient and elevated (ambient + 10 ppb ozone (O3) for 6 h?day?1) level of O3 in open top chambers. Ozone sensitivity was assessed by recording the magnitude of foliar visible injury and changes in various physiological parameters. All the six cultivars showed visible foliar symptoms due to O3, ranging 7.4 to 55.7 % injured leaf area. O3 significantly depressed total chlorophyll, photosynthetic rate (Ps), quantum yield (F v/F m) and total biomass although the extent of variation was cultivar specific. Cultivar HUM-1 showed maximum reduction in Ps and stomatal conductance. The fluorescence parameters also indicated maximum damage to PSII reaction centres of HUM-1. Injury percentage, chlorophyll loss, Ps, F v/F m and total biomass reduced least in HUM-23 depicting highest O3 resistance (R%).  相似文献   

5.
Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ?). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.  相似文献   

6.
We present diurnal variation of ambient ammonia (NH3) in relation with other trace gases (O3, CO, NO, NO2, and SO2) and meteorological parameters at an urban site of Delhi during winter period. For the first time, ambient ammonia (NH3) was monitored very precisely and continuously using ammonia analyzer, which operates on chemiluminescence method. NH3 estimation efficiency of the chemiluminescence method (>90%) is much higher than the conventional chemical trapping method (reproducibility 4.5%). Ambient NH3 concentration reaches its maxima (46.17 ppb) at night and minimum during midday. Result reveals that the ambient ammonia (NH3) concentration is positively correlated with ambient NO (r 2?=?0.79) and NO2 (r 2?=?0.91) mixing ratio and negatively correlated with ambient temperature (r 2?=???0.32). Wind direction and wind speed indicates that the nearby (~500 m NW) agricultural fields may be major source of ambient NH3 at the observational site.  相似文献   

7.
Sugarcane molasses-based distillery spent wash (DSW) is well known for its toxicity and complex mixture of various recalcitrant organic pollutants with acidic pH, but the chemical nature of these pollutants is unknown. This study revealed the presence of toxic organic acids (butanedioic acid bis(TMS)ester; 2-hydroxysocaproic acid; benzenepropanoic acid, α-[(TMS)oxy], TMS ester; vanillylpropionic acid, bis(TMS)), and other recalcitrant organic pollutants (2-furancarboxylic acid, 5-[[(TMS)oxy] methyl], TMS ester; benzoic acid 3-methoxy-4-[(TMS)oxy], TMS ester; and tricarballylic acid 3TMS), which are listed as endocrine-disrupting chemicals. In addition, several major heavy metals were detected, including Fe (163.947), Mn (4.556), Zn (2.487), and Ni (1.175 mg l?1). Bacterial community analysis by restriction fragment length polymorphism revealed that Bacillus and Stenotrophomonas were dominant autochthonous bacterial communities belonging to the phylum Firmicutes and γ-Proteobacteria, respectively. The presence of Bacillus and Stenotrophomonas species in highly acidic environments indicated its broad range adaptation. These findings indicated that these autochthonous bacterial communities were pioneer taxa for in situ remediation of this hazardous waste during ecological succession. Further, phytotoxicity assay of DSW with Phaseolus mungo L. and Triticum aestivum revealed that T. aestivum was more sensitive than P. mungo L. in the seed germination test. The results of this study may be useful for monitoring and toxicity assessment of sugarcane molasses-based distillery waste at disposal sites.  相似文献   

8.
Pathogenic Vibrio species are an important cause of foodborne illnesses. The aim of this study was to describe the occurrence of potentially pathogenic Vibrio species in the final effluents of a wastewater treatment plant and the risk that they may pose to public health. During the 1-year monitoring, a total of 43 Vibrio strains were isolated: 23 Vibrio alginolyticus, 1 Vibrio cholerae, 4 Vibrio vulnificus, and 15 Vibrio parahaemolyticus. The PCR investigation of V. parahaemolyticus and V. cholerae virulence genes (tlh, trh, tdh, toxR, toxS, toxRS, toxT, zot, ctxAB, tcp, ace, vpi, nanH) revealed the presence of some of these genes in a significant number of strains. Intraspecies variability and genetic relationships among the environmental isolates were analyzed by random amplified polymorphic DNA-PCR (RAPD-PCR). We report the results of the first isolation and characterization of an environmental V. cholerae non-O1 non-O139 and of a toxigenic V. parahaemolyticus strain in Tunisia. We suggest that non-pathogenic Vibrio might represent a marine reservoir of virulence genes that can be transmitted between strains by horizontal transfer.  相似文献   

9.
Exhaust emission and performance characteristics were evaluated in a Toyota van, powered by a 21 indirect injection (IDI) naturally aspirated diesel engine, operating on vegetable based waste cooking oil methyl ester (WCOME).Tests were performed on a chassis dynamometer and the data were compared with previous results conducted on the same vehicle using mineral diesel fuel. The data obtained includes smoke opacity, carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2) and brake power. Engine lubricating oil samples were also taken. Results from this study indicated a difference of approximately 9% in brake power between the two fuels. WCOME developed a significant lower smoke opacity level and reduced CO, CO2, SO2 emissions. However, O2, NO2 and NO levels were higher with the vegetable oil based fuel. Power values were comparable for both fuels. Lubricating oil analysis gave little change of viscosity and wear metal concentrations after 2887km were: Silicon 35ppm, Chromium 3.3ppm, Iron 33.8ppm, Copper 14.1ppm and lead 78.6ppm.  相似文献   

10.
Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40–70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs.  相似文献   

11.
Ozone, NO2, SO2, CO, PM10 and meteorological parameters were measured simultaneously during the summer?Cautumn season 2007 in Osijek??the eastern, flat, agricultural part of Croatia. Fourier analysis confirms the existence of variation in ozone volume fractions with periods ranging from the usual semi-daily and daily to 7 and 28 daily cycles. The relationships between O3 and other variables were modelled in three ways: principal component analysis, multiple linear regression and principal component regression. The results of the principal component analysis detected underlying relationships among ozone concentrations and meteorological variables. An extremely simple meteorological model is suitable for the prediction of ozone levels. The meteorological factors, temperature and cloudiness played a main role in the MLR model (R 2?=?0.83). The application of the principal component regression approach confirmed that the original variables associated with the valid principal components were meteorological variables (R 2?=?0.82).  相似文献   

12.
Integrated pipe manufacturing industry is operation intensive and has significant air pollution potential especially when it is equipped with a captive power production facility. Emissions of SO2, NO x , and particulate matter (PM) were estimated from the stationary sources in a state-of-the-art pipe manufacturing plant in India. Major air polluting units like blast furnace, ductile iron spun pipe facility, and captive power production facility were selected for stack gas monitoring. Subsequently, ambient air quality modeling was undertaken to predict ground-level concentrations of the selected air pollutants using Industrial Source Complex (ISC 3) model. Emissions of SO2, NO x , and particulate matter from the stationary sources in selected facilities ranged from 0.02 to 16.5, 0.03 to 93.3, and 0.09 to 48.3 kg h???1, respectively. Concentration of SO2 and NO x in stack gas of 1,180-kVA (1 KW = 1.25 kVA) diesel generator exceeded the upper safe limits prescribed by the State Pollution Control Board, while concentrations of the same from all other units were within the prescribed limits. Particulate emission was highest from the barrel grinding operation, where grinding of the manufactured pipes is undertaken for giving the final shape. Particulate emission was also high from dedusting operation where coal dust is handled. Air quality modeling indicated that maximum possible ground-level concentration of PM, SO2, and NO x were to the tune of 13, 3, and 18 μg/m3, respectively, which are within the prescribed limits for ambient air given by the Central Pollution Control Board.  相似文献   

13.
This study assessed if the use of sterol demethylase inhibitor fungicides in vineyard production can induce resistance to azoles in Aspergillus strains and if it can induce selection of resistant species. We also tried to identify the Aspergillus species most prevalent in the vineyards. Two vineyards from northern Portugal were selected from “Vinhos Verdes and “Douro” regions. The vineyards were divided into plots that were treated or not with penconazole (PEN). In each vineyard, air, soil, and plant samples were collected at three different times. The strains of Aspergillus spp. were isolated and identified by morphological and molecular techniques. We identified 46 Aspergillus section Nigri, eight Aspergillus fumigatus, seven Aspergillus lentulus, four Aspergillus wentii, two Aspergillus flavus, two Aspergillus terreus, one Aspergillus calidoustus, one Aspergillus westerdijkiae, one Aspergillus tamarii, and one Eurotium amstelodami. Aspergillus strains were evaluated for their susceptibility to medical azoles used in human therapy (itraconazole, posaconazole, and voriconazole) and to agricultural azoles (PEN) used in the prevention and treatment of plant diseases. The isolates showed moderate susceptibility to voriconazole. We did not observe any decrease of susceptibility to the medical azoles tested throughout the testing period in any of the treated plots, although some of the resistant species were isolated from there.  相似文献   

14.
Soil samples were collected from agricultural fields and gardens in North 24 Parganas, West Bengal, and fungi species were isolated from them. Thirty-one fungal species were isolated with 19 found in agricultural soil and 28 in garden soil. Twenty-eight out of 31 were identified using cultural and microscopic characters, and three were unidentified. The diversity of isolated fungi was calculated by Simpson’s diversity index. The garden soil possessed more fungal colonies (750) than agricultural soil (477). In agricultural soil, the dominant fungi were Aspergillus niger, Rhizopus oryzae, and Penicillium expansum, and the dominant fungi of garden soil were A. niger and Fusarium moniliforme. Simpson’s diversity index indicated that garden soil had more fungal diversity (0.939) than agricultural soil (0.896). The entomopathogenic capacity of the isolated fungi was tested against the brinjal shoot and fruit borer (Leucinodes orbonalis Guen) which is the major insect pest of brinjal. The isolated fungi were screened against larva of L. orbonalis for their entomopathogenic potential. Beauveria bassiana, A. niger, and P. expansum showed appreciable antagonism to L. orbonalis, and their lethal doses with 50 % mortality (LD50s) were 4.0?×?107, 9.06?×?107, and 1.50?×?108 spore/mL, respectively, and their times taken to reach 50 % mortality (LT50s) were 9.77, 10.56, and 10.60 days, respectively. This work suggests the restriction of chemical pesticide application in agricultural fields to increase fungal diversity. The entomopathogenic efficacy of B. bassiana could be used in agricultural fields to increase fugal diversity and protect the brinjal crop.  相似文献   

15.
In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249–3,745 mg/m3 and 2,440–2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NO x , SO x and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062–0.093 mg/m3 NO x , 0.026 mg/m3 SO x and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker–roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.  相似文献   

16.
The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box–Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L?1, cactus dosage 2.60 mg L?1, and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L?1, cactus dosage 160 mg L?1, and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.  相似文献   

17.
Toxicity of lead in soil is well documented and established. Phytoremediation has gained attention as a cheap, easily applicable, and eco-friendly clean-up technology. Chemical methods are used to assess exact levels and type of pollutants but heavy metal content in soil can also be evaluated indirectly by estimation of phytotoxicity levels using bioassays. Plant bioassays through fast germinating cereals can indicate not only the level of pollution and its effects on growth and survival but also the progress of phytoremediation process. The performance of barley Hordeum vulgare L. seedlings as bioassay for assessment of changes in the levels of lead (Pb) at three concentrations, i.e., 300 (T1), 600 (T2), and 1,200 ppm (T3) in the soil was evaluated while testing the efficiency of Crinum asiaticum L. as a phytoremedial tool. At the first assessment, i.e., 30 DAT (days after treatment) shoot and root lengths of seedlings decreased with increasing concentrations of Pb. As the study progressed, a decrease in levels of Pb was accompanied by better germinability and growth of barley. At 120 DAT seedling growth in all the treatments were comparable to control. In T1, T2, and T3 soils, 74.5%, 83.7%, and 91.2% reduction in lead content was observed at 120 DAT. Highly significant correlations between decreasing pollutant (Pb) content in the soil, seed germination, and seedling growth of barley H. vulgare were found. The differences in root and shoot length as well as overall growth pattern are indicative of the suitability of barley as a bio-monitoring tool.  相似文献   

18.
Samples of soil, water, and sediments from industrial estates in Lagos were collected and analyzed for heavy metals and physicochemical composition. Bacteria that are resistant to elevated concentrations of metals (Cd2?+?, Co2?+?, Ni2?+?, Cr6?+?, and Hg2?+?) were isolated from the samples, and they were further screened for antibiotic sensitivity. The minimum tolerance concentrations (MTCs) of the isolates with dual resistance to the metals were determined. The physicochemistry of all the samples indicated were heavily polluted. Twenty-two of the 270 bacterial strains isolated showed dual resistances to antibiotics and heavy metals. The MTCs of isolates to the metals were 14 mM for Cd2?+?, 15 mM for Co2?+? and Ni2?+?, 17 mM for Cr6?+?, and 10 mM for Hg2?+?. Five strains (Pseudomonas aeruginosa, Actinomyces turicensis, Acinetobacter junni, Nocardia sp., and Micrococcus sp.) resisted all the 18 antibiotics tested. Whereas Rhodococcus sp. and Micrococcus sp. resisted 15 mM Ni2?+?, P. aeruginosa resisted 10 mM Co2?+?. To our knowledge, there has not been any report of bacterial strains resisting such high doses of metals coupled with wide range of antibiotics. Therefore, dual expressions of antibiotics and heavy-metal resistance make the isolates, potential seeds for decommissioning of sites polluted with industrial effluents rich in heavy metals, since the bacteria will be able to withstand in situ antibiosis that may prevail in such ecosystems.  相似文献   

19.
To analysze the dynamic degradation and final residues of acephate and its metabolite methamidophos, field-experiments with pakchoi (Brassica campestris L.) in open field and greenhouse were carried out in Beijing, China in 2004 and 2005. The degradation dynamics and final residues were determined by gas chromatography (GC) equipped with a pulsed flame photometric detector and GC coupled to mass spectrometry (MS)/MS after acephate was applied on open field and green house pakchoi (B. campestris L.). The dynamic degradation results showed that the half-lives of acephate and methamidophos in open field pakchoi were 1.36 days with dynamic degradation equation C t ?=?133.01e???0.5107t , and 2.86 days with C t ?=?6.5753e???0.2422t , respectively. While the half-lives of acephate and methamidophos in the greenhouse were 1.07 days with C t ?=?59.134e???0.4353t and 0.79 days with C t ?=?0.2703e???0.2595t , respectively. The final residue analysis demonstrated that >50% of total methamidophos were resulted from the degradation of acephate 7 and 18 days after it was applied on the greenhouse pakchoi, respectively. While in the open-field pakchoi, >90% of total methamidophos was found to be the metabolite of acephate.  相似文献   

20.
Phytoplankton studies in early 1970s have shown the annual dominance of diatoms and a seasonal abundance of Trichodesmium in the lower reaches of the Cochin backwaters (CBW) and adjacent coastal Arabian Sea during the pre-summer monsoon period (February to May). Surprisingly, more recent literature shows a complete absence of Trichodesmium in the CBW after 1975 even though their seasonal occurrence in the adjacent coastal Arabian Sea continued without much change. In order to understand this important ecological feature, we analyzed the long-term water quality data (1965–2005) from the lower reaches of the CBW. The analyses have shown that salinity did not undergo any major change in the lower reaches over the years and values remained >30 throughout the period. In contrast, a tremendous increase was well marked in levels of nitrate (NO3) and phosphate (PO4) in the CBW after 1975 (av. 15 and 3.5 μM, respectively) compared with the period before (av. 2 and 0.9 μM, respectively). Monthly time series data collected in 2004–2005 period from the lower reaches of the CBW and coastal Arabian Sea have clearly shown that the physical characteristics like salinity, temperature, water column stability, and transparency in both regions are very similar during the pre-summer monsoon period. In contrast, the nutrient level in the CBW is several folds higher (NO3, 8; PO4, 4; SiO4, 10; and NH4, 19 μM) than the adjacent coastal Arabian Sea (NO3, 0.7; PO4, 0.5; SiO4, 0.9; and NH4, 0.6 μM). The historic and fresh time series data evidences a close coupling between enriched levels of nutrients and the absence of Trichodesmium in the Cochin backwaters  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号