首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aimed to develop a depth-averaged explicit model for flow and pollutant transport in coastal waters based on the shallow water equations and the mass advection-diffusion equation. The proposed model was discretized using the finite volume method (FVM) with triangular cells. Then, it applied Roe’s approximate Riemann solution to compute the water momentum flux on the grid interfaces. This model enabled the higher accuracy in capturing the dry-wet moving fronts (discontinuous problems for flow and solute). The high-resolution scheme was evaluated to solve the advection and diffusion terms for mass transport. The model was verified by comparing the predictions of analytical solutions, laboratory tests, and other simulations for Gironde estuary with good computational accuracy. The developed model was also used to calculate the circulation and the motion of chemical oxygen demand (COD) pollutants from the sewage outfalls in the Zhuanghe coastal water with dry and wet moving boundaries. The research results showed that the residual current directions of spring and neap tides were basically the same in the Zhuanghe coastal water. However, the tide residual current of spring tide was slightly greater than that of the neap tide. In addition, there were tide residual currents from the northeast to the southwest in nearshore water and from the southwest to the northeast outside the banks, respectively. The tidal flows in the alongshore direction were strong, resulting in highly spread concentration distributions. In particular, the COD concentration reached some parts of the southern water. It could be seen that the excessive pollutant discharge from the sewage outfalls located at Zhuanghe district would cause serious pollution in aquaculture water near Shicheng island.  相似文献   

2.
Vassova lagoon is a typical Mediterranean (small, shallow, micro-tidal, well-mixed) coastal lagoon, receiving limited seasonal freshwater inflows from direct precipitation and underground seepage. An intensive study was carried out in order to quantify the mechanisms responsible for the intra-tidal and residual transport of water, salt, nutrients and chlorophyll at the mouth of this lagoon and to assess the lagoon's flushing behavior. Results indicated that although the system is micro-tidal, tidal effects appeared to be the dominant factor for the longitudinal distribution of physical and chemical parameters, while the associated residual flow is also important and serves as a baseline measure of overall circulation. However, analysis of the net longitudinal currents and fluxes of water, salt and nutrients revealed the importance of non-tidal effects (wind effect and precipitation incidents) in the mean tidal transport. It is shown that the Eulerian residual currents transported water and its properties inwards under southern winds, while a seaward transport was induced during precipitation incidents and northern winds. The Stokes drift effect was found an order of magnitude lower than the Eulerian current, directed towards the lagoon, proving the partially-progressive nature of the tide. Nutrients and chlorophyll-α loads are exported from the lagoon to the open sea during the ebb phase of the autumn and winter tidal cycles, associated with the inflow of nutrient-rich freshwater, seeped through the surrounding drainage canal. The reverse transport occurs in spring and early summer, when nutrients enter the lagoon during the flood tidal phase, from the nutrient-rich upper layer of the stratified adjacent sea. Application of a tidal prism model shows that Vassova lagoon has a mean flushing time of 7.5 days, ranging between 4 to 18 days, affected inversely by the tidal oscillation.  相似文献   

3.
Numerical models are useful for predicting the transport and fate of contaminants in dynamic marine environments, and are increasingly a practical solution to environmental impact assessments. In this study, a three-dimensional hydrodynamic model and field data were used to validate a far-field dispersion model that, in turn, was used to determine the fate of treated wastewater (TWW) discharged to the ocean via a submarine ocean outfall under hypothetical TWW flows. The models were validated with respect to bottom and surface water current speed and direction, and in situ measurements of total nitrogen and faecal coliforms. Variations in surface and bottom currents were accurately predicted by the model as were nutrient and coliform concentrations. Results indicated that the ocean circulation was predominately wind driven, evidenced by relatively small oscillations in the current speeds along the time-scale of the tide, and that dilution mixing zones were orientated in a predominantly north-eastern direction from the outfall and parallel to the coastline. Outputs of the model were used to determine the ‘footprint’ of the TWW plume under a differing discharge scenario and, particularly, whether the resultant changes in TWW contaminants, total nitrogen and faecal coliforms would meet local environmental quality objectives (EQO) for ecosystem integrity, shellfish harvesting and primary recreation. Modelling provided a practical solution for predicting the dilution of contaminants under a hypothetical discharge scenario and a means for determining the aerial extent of exclusion zones, where the EQOs for shellfish harvesting and primary recreation may not always be met. Results of this study add to the understanding of regional discharge conditions and provide a practical case study for managing impacts to marine environments under a differing TWW discharge scenario, in comparison to an existing scenario.  相似文献   

4.
Intra-tidal variability in the transport of materials through the Cochin estuary was studied over successive spring and neap tides to estimate the export fluxes of nutrients and chlorophyll a into the adjoining coastal zone. The results showed that there was a substantial increase in the freshwater flow into the estuary following heavy rains (~126 mm) prior to the spring tide observations. The estuary responded accordingly with a relatively larger export through the Cochin inlet during spring tide over neap tide. Despite an increased freshwater discharge during spring tide, the export fluxes of phosphate and ammonia were high during neap tide due to their input into the estuary through anthropogenic activities. The significance of this study is that the export fluxes from the Cochin estuary could be a major factor sustaining the spectacular monsoon fishery along the southwest coast of India.  相似文献   

5.
A three-dimensional hydrodynamic and water quality model was developed and applied to predict the changes in physical and biochemical processes that would result from the proposed Dadu Weir construction in the Wu River estuary, located in central Taiwan. A high-resolution unstructured grid was constructed to represent the narrow channels in the tidal estuary. The model was calibrated and verified with available hydrographic and water quality data measured in 2011. The overall performance of the model is in reasonable agreement with the measured water level, salinity, and water quality state variables. The model was then used to investigate the changes in salt water intrusion and water quality as a result of weir construction under low-flow conditions. The model simulations indicate that more tidal energy will propagate into the estuary after weir construction because of decreased freshwater discharges. The limits of salt water intrusion before and after weir construction coincide at a distance of 11.6 km from the mouth of the Wu River. This salt water intrusion limit is the reason that the Dadu Weir will be constructed at a distance of 12 km from the mouth of the Wu River. The weir will become a barrier to salt water intrusion. The simulation results indicate that the concentrations of dissolved oxygen and nutrients will decrease slightly after weir construction, while the chlorophyll a concentration in the middle reach will increase after weir construction. However, construction of the weir is predicted to have little influence on water quality conditions downstream of the Wu River estuary. The results of this case study provide quantitative estimates of the physical and biochemical changes expected to occur in this nature system due to human action.  相似文献   

6.
Estuaries may be subject to warming due to global climate change but few studies have considered the drivers or seasonality of warming empirically. We analyzed temperature trends and rates of temperature change over time for the Hudson River estuary using long-term data, mainly from daily measures taken at the Poughkeepsie Water Treatment Facility. This temperature record is among the longest in the world for a river or estuary. The Hudson River has warmed 0.945 °C since 1946. Many of the warmest years in the record occurred in the last 16 years. A seasonal analysis of trends indicated significant warming for the months of April through August. The warming of the Hudson is primarily related to increasing air temperature. Increasing freshwater discharge into the estuary has not mitigated the warming trend.  相似文献   

7.
The 239+240Pu activities and 240Pu/239Pu atom ratios were analyzed using a double-focusing SF-ICP-MS for sediment core samples obtained in 2007–2008 from the North Jiangsu tidal flats in the Yellow Sea in China. Particular attention was focused on the 240Pu/239Pu atom ratios in the sediment to identify the origins of Pu isotopes. The profiles of 239+240Pu activities in the sediment cores are similar to those of the 137Cs activities. The 240Pu/239Pu atom ratios in the tidal flats showed typical global fallout values, indicating that this area did not receive the possible early direct close-in fallout or oceanic current transported Pu from the Pacific Proving Grounds (PPG). If any, the contribution of the PPG source Pu to the total Pu inventory is negligible. This is different from the sediments in the Yangtze River estuary in the East China Sea, where the PPG source Pu contributed ca. 45 % to the total inventory. In addition, the observation of the global fallout origin Pu in the North Jiangsu tidal flats indicated that the nuclear power plant in the region was not causing any alteration/contamination to the 240Pu/239Pu atom ratios. The 239+240Pu and 137Cs activities/inventories in the sediment cores showed correlation to the mean clay sediment compositions (fine particles) in the tidal flats. Therefore, mud deposits are served as sinks for the anthropogenic radionuclides in the tidal flats and the Yellow Sea. Integrated with the previously reported spatial distributions of 239+240Pu and 137Cs activities in the surface sediments of the Yellow Sea, the mechanism of Pu transport with the ocean currents and the scavenging characteristics in the Yellow Sea were discussed.  相似文献   

8.
A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.  相似文献   

9.
An investigation of the variability in the size distribution of particle adsorbed polycyclic aromatic hydrocarbons (PAHs) on an inner city sampling site showed differences depending on the wind direction. Particle size distributions of PAHs from outdoor air sampling were measured in Munich from 1994 to 1997. The sampling site is located northeast of a crossing with heavy traffic and southwest of a large inner city park. Depending on the wind direction, three different size distributions of particle adsorbed PAHs were observed. The maximum PAH concentration on very small particles (geometric mean diameter 75 nm) was observed with wind from west to southwest coming directly from the crossing area or the roads with heavy traffic. The maximum PAH concentration on particles with geometric mean diameter of 260 nm was found on days with wind from the built-up area north of the sampling site. On particles with geometric mean diameter of 920 nm the maximum PAH concentration was found on days with main wind directions from northeast to east. On these days the wind is blowing from the direction of the city park nearby. The distribution of particle adsorbed PAHs within different particle size classes is substantially influenced by the distance of the sampling site from strong sources of PAH loaded particulate matter.  相似文献   

10.
Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured in the estuary. This study suggests that the same pyrethroid and organophosphate pesticides that have been shown to cause water and sediment toxicity in urban and agriculture water bodies throughout California, have the potential to affect estuarine habitats. The results establish baseline data in the Santa Maria River estuary to allow evaluation of ecosystem improvement as management initiatives to reduce pesticide runoff are implemented in this watershed.  相似文献   

11.
The Nassau River estuary is located in northeast Florida adjacent to the eutrophic St. Johns River. Historically, development has been sparse in the Nassau River's catchment; thus, the system may provide a relatively undisturbed aquatic environment. To monitor the condition of the Nassau River estuary and to discern spatial and temporal trends in water quality, nutrients and hydrographic variables were assessed throughout the estuary from 1997 to 2011. Hydrographic (temperature, salinity, total suspended solids, and turbidity) and nutrient parameters (total phosphorus, ortho-PO4 3?, total nitrogen, NH4 +, total Kjeldahl nitrogen, and NO3 ?) were monitored bimonthly at 12 sites in the mesohaline and polyhaline zones of the river. Nonparametric Kendall's Tau was implemented to analyze long-term water quality patterns. Salinity was found to increase with time, particularly in the mesohaline sampling sites. Dissolved oxygen decreased over time in the estuary and hypoxic conditions became increasingly frequent in the final years of the study. Nutrients increased in the estuary, ranging from 149 to 401 %. Rainfall data collected in adjacent conservation areas did not correlate well with nutrients as compared with stream discharge data collected in the basin headwaters, outside of the conservation lands, attributed here to expanding urbanization. During the study period, the Nassau basin underwent rapid human population growth and land development resulting in commensurate impacts to water quality. Nutrient and physical data collected during this study indicate that the Nassau River estuary is becoming more eutrophic with time.  相似文献   

12.
The Danshui River estuarine system is the largest estuarine system in northern Taiwan and is formed by the confluence of Tahan Stream, Hsintien Stream, and Keelung River. A comprehensive one-dimensional (1-D) model was used to model the hydrodynamics and cohesive sediment transport in this branched river estuarine system. The applied unsteady model uses advection/dispersion equation to model the cohesive sediment transport. The erosion and deposition processes are modeled as source/sink terms. The equations are solved numerically using an implicit finite difference scheme. Water surface elevation and longitudinal velocity time series were used to calibrate and verify the hydrodynamics of the system. To calibrate and verify the mixing process, the salinity time series was used and the dispersion coefficient of the advection/dispersion equation was determined. The cohesive sediment module was calibrated by comparing the simulated and field measured sediment concentration data and the erosion coefficient of the system was determined. A minimum mean absolute error of 4.22 mg/L was obtained and the snapshots of model results and field measurements showed a reasonable agreement. Our modeling showed that a 1-D model is capable of simulating the hydrodynamics and sediment processes in this estuary and the sediment concentration has a local maximum at the limit of salinity intrusion. Furthermore, it was indicated that for Q 50 (the flow which is equaled or exceeded 50% times), the turbidity maximum location during neap tide is about 1 km closer to the mouth compared to that during spring tide. It was found that deposition is the dominant sediment transport process in the river during spring–neap periods. It was shown that, while sediment concentration at the upstream depends on the river discharge, the concentration in the downstream is not a function of river discharge.  相似文献   

13.
With rapid economic development, the Pearl River Delta (PRD) of China has experienced a series of serious heavy metal pollution events. Considering complex hydrodynamic and pollutants transport process, one-dimensional hydrodynamic model and heavy metal transport model were developed for tidal river network of the PRD. Then, several pollution emergency scenarios were designed by combining with the upper inflow, water quality and the lower tide level boundary conditions. Using this set of models, the temporal and spatial change process of cadmium (Cd) concentration was simulated. The influence of change in hydrodynamic conditions on Cd transport in tidal river network was assessed, and its transport laws were summarized. The result showed the following: Flow changes in the tidal river network were influenced remarkably by tidal backwater action, which further influenced the transport process of heavy metals; Cd concentrations in most sections while encountering high tide were far greater than those while encountering middle or low tides; and increased inflows from upper reaches could intensify water pollution in the West River (while encountering high tide) or the North River (while encountering middle or low tides).  相似文献   

14.
Discharge measurement in a tidal stream is always a difficult task. Owing to the complex flow conditions, discharge measurement in tidal streams has to be finished quickly, and must be highly efficient in order to yield an accurate measurement of real-time discharge. Measuring the discharge of tidal streams is done in three steps: (1) establishing the stage and cross-sectional area relation, (2) estimating the index velocity by using a velocity distribution equation based on the probability concept, (3) establishing the relationship between the index and mean velocities. Then the cross-sectional area and mean velocity can be estimated by the gage height and index velocity, respectively. The discharge of tidal streams is computed as the product of the cross-sectional area and mean velocity. The velocity distribution of the Taipei Bridge and Guan-du Bridge in the Tanshui River were established and analyzed to demonstrate the use of discharge measurement by index velocity for estimating the discharge of this tidal stream. The results reveal no large difference between the discharges measured by the conventional methods and the index velocity. This pilot study proposed a cost-effectiveness and efficient method. It is an easy, quick, and accurate model for measuring the real-time discharge of a tidal stream. It makes automatic, real-time, and continuous monitoring of the discharge in a tidal stream become possible.  相似文献   

15.
Bacterial indicators in relation to tidal variations were studied at five locations for over 2 days covering three tidal cycles in the southwestern region of Gulf of Kachchh, India. Tidal flow here is predominantly in the east west direction and can transport particles up to 32 km. Tidal amplitude appears to play a prominent role in abundance, distribution, and dispersal of coliform bacteria examined during this study. Shallow depths, clayey sediments, strong currents, and higher tidal amplitudes appear to rise by an order of magnitude in total bacterial abundance up to 2.4×104 ml???1 due to their resuspension from the churned up sediments. Dispersal of allochthonous microflora far into coastal marine regions appears to be governed by the strong tidal amplitude in this region.  相似文献   

16.
A simple zero‐dimensional model was developed which describes the oxygen concentrations and major nutrient processes in the tidal influenced Elbe estuary. The model was calibrated by way of comparison with continuous measurements of the oxygen‐ and chlorophyll concentrations at the non‐tidal part of the estuary. A special calibration method was applied which utilised the fact that natural steady‐state conditions are often found during which the range and the average value of the day–night fluctuations remain constant over a period of several days. Subsequent model runs were carried out to simulate the oxygen concentrations downstream, i.e., after a few days of transport time of the water body. The varying depth of the Elbe downstream of Hamburg harbour was taken into account by altering the model parameters ‘light penetration’ and ‘aeration’. The oxygen concentrations resulting from the model showed a distinct minimum, which agreed well with the minimum measured in longitudinal profiles, thus indicating that the occurrence of the oxygen minimum in the Elbe estuary can mainly be explained by the processes included in our simple model. Sensitivity checks identified some relationships, e.g., light intensity ? growth rate, which are critical for the oxygen balance. With this work it could be demonstrated that even simple zero‐dimensional models can improve our understanding of the complex interrelationship of different physical, chemical and biological processes in rivers and that such models can be used for simple scenarios in water quality management.  相似文献   

17.
The hydrodynamics of an idealized estuarine plume along a straight coast are studied using a three-dimensional hydrodynamical module of the Coupled Hydrodynamical Ecological Model for Regional Shelf Seas. The sensitivity of the solution with respect to river discharge, bottom roughness length, and the presence or absence of tides are studied. Assuming constant water depth and no wind forcing, modeled results for the surface layer are obtained, including: (1) variation in the horizontal shape of the plume; (2) horizontal distribution of the current vector; and (3) horizontal distribution of the salinity field within the plume over one tidal cycle. Effects of three different river discharges, four selected different bottom roughness lengths, and tides on its development are examined. Results suggest: (1) the plume length naturally increases through time under tidal forcing or as well as without tidal forcing, but its width shows approximately periodic variation; (2) both the plume width and length increase with increasing river discharge; (3) both the plume width and length decrease with increasing four selected bottom roughness lengths; and (4) both the bulge and coastal current of the plume are more evident without the presence of tidal effects. The results show their potential implications for contaminant fate and transport and novel methods of pollution prevention and control in estuarine and coastal waters.  相似文献   

18.
The balance of fresh and saline water is essential to estuarine ecosystem function. Along the fresh-brackish-saline water gradient within the C-43 canal/Caloosahatchee River Estuary (CRE), the quantity, timing and distribution of water, and associated water quality significantly influence ecosystem function. Long-term trends of water quality and quantity were assessed from Lake Okeechobee to the CRE between May 1978 and April 2016. Significant changes to monthly flow volumes were detected between the lake and the estuary which correspond to changes in upstream management. and climatic events. Across the 37-year period, total phosphorus (TP) flow-weighted mean (FWM) concentration significantly increased at the lake; meanwhile, total nitrogen (TN) FMW concentrations significantly declined at both the lake and estuary headwaters. Between May 1999 and April 2016, TN, TP, and total organic carbon (TOC), ortho-P, and ammonium conditions were assessed within the estuary at several monitoring locations. Generally, nutrient concentrations decreased from upstream to downstream with shifts in TN/TP from values >?20 in the freshwater portion, ~?20 in the estuarine portion, and <?20 in the marine portion indicating a spatial shift in nutrient limitations along the continuum. Aquatic productivity analysis suggests that the estuary is net heterotrophic with productivity being negatively influenced by TP, TN, and TOC likely due to a combination of effects including shading by high color dissolved organic matter. We conclude that rainfall patterns, land use, and the resulting discharges of runoff drive the ecology of the C-43/CRE aquatic continuum and associated biogeochemistry rather than water management associated with Lake Okeechobee.  相似文献   

19.
The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre-monsoon, monsoon and post-monsoon seasons. Higher abundance of total bacterial count (TBC) in surface water near the river mouth, compared to the upstream, during pre-monsoon was followed by an opposite scenario during the monsoon When seasonally compared, it was during the post-monsoon season when TBC in surface water was highest, with simultaneous decrease in their count in the river sediment. The total viable bacterial count (TVC) was influenced by the depth-wise stratification of salinity, which varied with tidal fluctuation, usually high and low during the neap and spring tides respectively. The abundance of both the autochthonous Vibrio spp. and allochthonous coliform bacteria was influenced by the concentrations of dissolved nutrients and suspended particulate matter (SPM). It is concluded that depending on the interplay of riverine discharge and tidal amplitude, sediment re-suspension mediated increase in SPM significantly regulates bacteria populations in the estuarine water, urging the need of systematic regular monitoring for better prediction of related hazards, including those associated with the rise in pathogenic Vibrio spp. in the changing climatic scenarios.  相似文献   

20.
Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L?1) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号