首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Air pollution in China is complex, and the formation mechanism of chemical components in particulate matter is still unclear. This study selected three consecutive heavy haze pollution episodes (HPEs) during winter in Beijing for continuous field observation, including an episode with heavy air pollution under red alert. Clean days during the observation period were selected for comparison. The HPE characteristics of Beijing in winter were: under the influence of adverse meteorological conditions such as high relative humidity, temperature inversion and low wind speed; and strengthening of secondary transformation reactions, which further intensified the accumulation of secondary aerosols and other pollutants, promoting the explosive growth of PM2.5. PM2.5/CO values, as indicators of the contribution of secondary transformation in PM2.5, were approximately 2 times higher in the HPEs than the average PM2.5/CO during the clean period. The secondary inorganic aerosols (sulfate nitrate and ammonium salt) were significantly enhanced during the HPEs, and the conversion coefficients were remarkably improved. In addition, it is interesting to observe that the production of sulfate tended to exceed that of nitrate in the late stage of all three HPEs. The existence of aqueous phase reactions led to the explosive growth sulfur oxidation ratio (SOR) and rapid generation of sulfate under high relative humidity (RH>70%).  相似文献   

2.
Sulfate aerosol contributes to particulate matter pollution and plays a key role in aerosol radiative forcing, impacting human health and climate change. Atmospheric models tend to substantially underestimate sulfate concentrations during haze episodes, indicating that there are still missing mechanisms not considered by the models. Despite recent good progress in understanding the missing sulfate sources, knowledge on different sulfate formation pathways during polluted periods still involves large uncertainties and the dominant mechanism is under heated debate, calling for more field, laboratory, and modeling work. Here, we review the traditional sulfate formation mechanisms in cloud water and also discuss the potential factors affecting multiphase S(Ⅳ) oxidation. Then recent progress in multiphase S(Ⅳ) oxidation mechanisms is summarized. Sulfate formation rates by different prevailing oxidation pathways under typical winter-haze conditions are also calculated and compared. Based on the literature reviewed, we put forward control of the atmospheric oxidation capacity as a means to abate sulfate aerosol pollution. Finally, we conclude with a concise set of research priorities for improving our understanding of sulfate formation mechanisms during polluted periods.  相似文献   

3.
为研究南京霾天气中大气气溶胶化学成分及其粒径分布的特征,使用β射线测尘仪、安德森9级撞击式采样器、离子色谱分析仪和热光碳分析仪对南京冬、春季节的颗粒物进行了采样分析.结果表明,霾日中3种主要二次离子SO42-、NO3-和NH4+在细粒径段中占比最高(77.4%),霾日中除F-和Cl-外其余离子均呈三峰型分布,工业排放、生物质燃烧与二次反应是粗、细粒径段中水溶性离子最重要来源.OC、EC均主要富集于细粒子中,PM2.1~10中OC与EC相关性较好(R2=0.76),说明存在共同来源.通过OC/EC特征物比值的方法得到霾日期间碳质颗粒物的来源为机动车尾气排放、燃煤和生物质燃烧.  相似文献   

4.
Haze phenomena were found to have an increasing tendency in recent years in Yong'an, a mountainous industrial city located in the center part of Fujian Province, China. Atmospheric fine particles (PM2.5) in the urban area during haze periods in three seasons (spring, autumn and winter) from 2007 to 2008 were collected, and the mass concentrations and chemical compositions (seventeen elements, water soluble inorganic ions (WSIIs) and carbonaceous species) of PM2.5 were determined. PM2.5 mass concentrations did not show a distinct difference among the three seasons. The carbonaceous species organic carbon (OC) and elemental carbon (EC) constituted up to 19.2%-30.4% of the PM2.5 mass during sampling periods, while WSIIs made up 25.3%-52.5% of the PM2.5 mass. The major ions in PM2.5 were SO42-, NO3- and NH4+, while the major elements were Si, K, Pb, Zn, Ca and Al. The experimental results (from data based on three haze periods with a 10-day sampling length for each period) showed that the crustal element species was the most abundant component of PM2.5 in spring, and the secondary ions species (SO42-, NO3-, NH4+, etc.) was the most abundant component in PM2.5 in autumn and winter. This indicated that dust was the primary pollution source for PM2.5 in spring and combustion and traffic emissions could be the main pollution sources for PM2.5 in autumn and winter. Generally, coal combustion and traffic emissions were considered to be the most prominent pollution sources for this city on haze days.  相似文献   

5.
In order to study the concentrations of major components,characteristics and comparison in hazy and non-hazy days of PM10 in Beijing,aerosol samples were collected at urban site in Beijing from December 29,2014 to January 22,2015.Heavy metals like Zn,Pb,Mn,Cu,As,V,Cr and Cd were deeply studied considering their toxic effects on human being;nine water-soluble inorganic ions(SO42-,NO3-,NH4+,Na+,K+,Cl...  相似文献   

6.
PM_(2.5) samples were collected in Zhengzhou during 3 years of observation, and chemical characteristics and source contribution were analyzed. Approximately 96% of the daily PM_(2.5) concentrations and annual average values exceeded the Chinese National Ambient Air Quality Daily and Annual Standards, indicating serious PM_(2.5) pollution. The average concentration of water-soluble inorganic ions was 2.4 times higher in heavily polluted days(daily PM32.5 concentrations 250 μg/mand visibility 3 km) than that in other days, with sulfate, nitrate, and ammonium as major ions. According to the ratio of NO-3/SO2-4,stationary sources are still the dominant source of PM_(2.5) and vehicle emission could not be ignored. The ratio of secondary organic carbon to organic carbon indicated that photochemical reactivity in heavily polluted days was more intense than in other days.Crustal elements were the most abundant elements, accounting for more than 60% of 23 elements. Chemical Mass Balance results indicated that the contributions of major sources(i.e., nitrate, sulfate, biomass, carbon and refractory material, coal combustion, soil dust,vehicle, and industry) of PM_(2.5) were 13%, 16%, 12%, 2%, 14%, 8%, 7%, and 8% in heavily polluted days and 20%, 18%, 9%, 2%, 27%, 14%, 15%, and 9% in other days, respectively.Extensive combustion activities were the main sources of polycyclic aromatic hydrocarbons during the episode(Jan 1-9, 2015) and the total benzo[a]pyrene equivalency concentrations in heavily polluted days present significant health threat. Because of the effect of regional transport, the pollution level of PM_(2.5) in the study area was aggravated.  相似文献   

7.
Particulate matter (i.e., PM1.0 and PM2.5), considered as the key atmospheric pollutants, exerts negative effects on visibility, global climate, and human health by associated chemical compositions. However, our understanding of PM and its chemical compositions in Beijing under the current atmospheric environment is still not complete after witnessing marked alleviation during 2013–2017. Continuous measurements can be crucial for further air quality improvement by better characterizing PM pollution and chemical compositions in Beijing. Here, we conducted simultaneous measurements on PM in Beijing during 2018–2019. Results indicate that annual mean PM1.0 and PM2.5 concentrations were 35.49 ± 18.61 µg/m3 and 66.58 ± 60.17 µg/m3, showing a positive response to emission controls. The contribution of sulfate, nitrate, and ammonium (SNA) played an enhanced role with elevated PM loading and acted as the main contributors to pollution episodes. Discrepancies observed among chemical species between PM1.0 and PM2.5 in spring suggest that sand particles trend to accumulate in the range of 1–2.5 µm. Pollution episodes occurred accompanied with southerly clusters and high formation of SNA by heterogeneous reactions in summer and winter, respectively. Results from positive matrix factorization (PMF) combined with potential source contribution function (PSCF) models showed that potential areas were seasonal dependent, secondary and vehicular sources became much more important compared with previous studies in Beijing. Our study presented a continuous investigation on PM and sources origins in Beijing, which provides a better understanding for further emission control as well as a reference for other cities in developing countries.  相似文献   

8.
We investigated variations of PM2.5 and water-soluble inorganic ions chemical characteristics at nine urban and rural sites in China using ground-based observations. From 2015 to 2019, mean PM2.5 concentration across all sites decreased by 41.9 µg/m3 with a decline of 46% at urban sites and 28% at rural sites, where secondary inorganic aerosol (SIAs) contributed to 21% (urban sites) and 17% (rural sites) of the decreased PM2.5. SIAs concentrations underwent a decline at urban locations, while sulfate (SO42–), nitrate (NO3), and ammonium (NH4+) decreased by 49.5%, 31.3% and 31.6%, respectively. However, only SO42– decreased at rural sites, NO3 increased by 21% and NH4+ decreased slightly. Those changes contributed to an overall SIAs increase in 2019. Higher molar ratios of NO3 to SO42– and NH4+ to SO42– were observed at urban sites than rural sites, being highest in the heavily polluted days. Mean molar ratios of NH3/NHx were higher in 2019 than 2015 at both urban and rural sites, implying increasing NHx remained as free NH3. Our observations indicated a slower transition from sulfate-driven to nitrate-driven aerosol pollution and less efficient control of NOx than SO2 related aerosol formation in rural regions than urban regions. Moreover, the common factor at urban and rural sites appears to be a combination of lower SO42– levels and an increasing fraction of NO3 to PM2.5 under NH4+-rich conditions. Our findings imply that synchronous reduction in NOx and NH3 emissions especially rural areas would be effective to mitigate NO3-driven aerosol pollution.  相似文献   

9.
Submicron aerosol is of extensive concern not only due to its significant impact on air quality but also because it is detrimental to human health. In this study, we investigated the characteristics, sources and chemical processes of submicron aerosol based on realtime online measurements of submicron aerosols(NR-PM 1) during December 2015 at an urban site in Beijing. The average mass concentration of NR-PM 1 was 92.5 ±84.9 μg/m3, the hourly maximum was 459.1 μg/m3 during t...  相似文献   

10.
SO_4~(2-) and NO_3~- are important chemical components of fine particulate matter(PM_(2.5)),especially during haze periods.This study selected two haze episodes in Beijing,China with similar meteorological conditions.A monitoring-modeling approach was developed to estimate the secondary conversion ratios of sulfur and nitrogen based on monitored and simulated concentrations.Measurements showed that in Episode 1(24th–25th October,2014),the concentrations(proportions)of SO_4~(2-) and NO_3~- reached 35.1μg/m~3(14.9%) and 55.0μg/m~3(22.9%),while they reached 14.4μg/m~3(9.3%) and 59.1μg/m~3(38.1%)in Episode 2(26th–27th October,2017).A modeling system was applied to apportion Beijing's SO_4~(2-) and NO_3~- in primary and secondary SO_4~(2-)/NO_3~- emitted from local and regional sources.Thus,secondary conversion contributions considering the local and regional level were defined.The former primarily focused on Beijing atmospheric oxidation ability and the latter mainly considered the existence form of Beijing SO_4~(2-)/NO_3~- under the regional transport impacts.Finally,secondary oxidation ratios were estimated through combining secondary conversion contribution coefficients for simulated and monitored concentrations.At regional level,sulfur oxidation ratios in polluted(clean)days during two sampling periods were0.57–0.72(0.07–0.52)and 0.74–0.80(0.08–0.61),nitrogen oxidation ratios were 0.20–0.29(0.05–0.15)and 0.34–0.38(0.02–0.29),indicating that atmospheric oxidation was enhanced when considering regional transport through 2014–2017.At the local level,sulfur oxidation ratios were 0.66–0.71(0.04–0.48)in haze(clean)days,while nitrogen oxidation ratios were0.16–0.29(0.02–0.16).The atmospheric oxidation ability markedly increased in PM_(2.5)pollution days,but changed only slightly between the two periods.  相似文献   

11.
To investigate the influence of haze on the chemical composition and formation processes of ambient aerosol particles,PM_(2.5) and size-segregated aerosol particles were collected daily during fall at an urban site of Gwangju,Korea.During the study period,the total concentration of secondary ionic species(SIS) contributed an average of 43.9% to the PM_(2.5) ,whereas the contribution of SIS to the PM_(2.5) during the haze period was 62.3%.The NO_3 and SO~(2-)_4 concentrations in PM_(2.5) during the haze period were highly elevated,being 13.4 and 5.0 times higher than those during non-haze period,respectively.The PM,NO~-_3,SO~(2-)_4,oxalate,water-soluble organic carbon(WSOC),and humic-like substances(HULIS) had tri-modal size distributions peaks at 0.32,1.0,and 5.2 μm during the non-haze and haze periods.However,during the non-haze period they exhibited dominant size distributions at the condensation mode peaking at 0.32 μm,while on October 21 when the heaviest haze event occurred,they had predominant droplet mode size distributions peaking at 1.00 μm.Moreover,strong correlations of WSOC and HULIS with SO~(2-)_4,oxalate,and K+at particle sizes of 1.8 μm indicate that secondary processes and emissions from biomass burning could be responsible for WSOC and HULIS formations.It was found that the factors affecting haze formation could be the local stable synoptic conditions,including the weak surface winds and high surface pressures,the long-range transportation of haze from eastern China and upwind regions of the Korean peninsula,as well as the locally emitted and produced aerosol particles.  相似文献   

12.
To investigate the characteristics and the specific mechanism of continuous haze,comprehensive measurements were conducted from 15 October to 19 November in the Atmospheric Environment Monitoring Super-Station in Heshan of Guangdong province.Five haze episodes occurred in October and November 2014 in the Pearl River Delta(PRD)region. The meteorological parameters, gas data, chemical compositions, and optical parameters of the aerosols were obtained. Among these events, the second haze episode,with the highest concentration of PM2.5 of 187.51 μg/m~3, was the most severe. NO~3-was always higher than SO_4~(2-), which indicated that motor vehicles played an important role in the haze, even though the oxidation rate from SO_2 to SO_4~(2-)was faster than that of NOXto NO_3~-. The difference between the hourly averages of Na+and K+during the haze episode and clean days was small, implying that straw combustion and sea salt had no significant effect on the occurrence of haze, and the backward trajectories of the air masses also conformed with this result. The air pollutants were difficult to disperse because of the significant decrease in the planetary boundary layer(PBL) height. Relative humidity played a crucial role in the formation of haze by leading to hygroscopic growth of the diameter of aerosols.  相似文献   

13.
The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibility 〈 2 km) and moderate (2 km 〈 visibility 〈 3 km) haze, mainly distributed in winter and spring. The mean particle number concentration was about 17,000/cm3 in haze, more than 2 times that in clean days. The greatest increase of particle number concentration was in 0.5-1μm and 1-10 μm size fractions during haze events, about 17.78 times and 8.78 times those of clean days. The largest increase of particle number concentration was within 50-100 nm and 100-200 nm fractions during photochemical smog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15 μm3/cm3 and 949, 649, 206 μm2/cm3, respectively. As haze events got more severe, the number concentration of particles smaller than 50 nm decreased, but the particles of 50-200 nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4, SO24- and NO3 increased great/y, followed by Na+, IC, Ca2+ and CI-. These ions were very different in size-resolved particles during haze and photochemical smog episodes.  相似文献   

14.
Size-classified daily aerosol mass concentrations and concentrations of water-soluble inorganic ions were measured in Hefei,China,in four representative months between September 2012 and August 2013.An annual average mass concentration of 169.09μg/m~3 for total suspended particulate(TSP)was measured using an Andersen Mark-II cascade impactor.The seasonal average mass concentration was highest in winter(234.73μg/m~3)and lowest in summer(91.71μg/m~3).Water-soluble ions accounted for 59.49%,32.90%,48.62%and 37.08%of the aerosol mass concentration in winter,spring,summer,and fall,respectively,which indicated that ionic species were the primary constituents of the atmospheric aerosols.The four most abundant ions were NO_3~-,SO_4~(2-),Ca~(2+) and NH_4~+.With the exception of Ca~(2+),the mass concentrations of water-soluble ions were in an intermediate range compared with the levels for other Chinese cities.Sulfate,nitrate,and ammonium were the dominant fine-particle species,which were bimodally distributed in spring,summer and fall;however,the size distribution became unimodal in winter,with a peak at 1.1–2.1μm.The Ca~(2+) peak occurred at approximately 4.7–5.8μm in all seasons.The cation to anion ratio was close to 1.4,which suggested that the aerosol particles were alkalescent in Hefei.The average NO_3~-/SO_4~(2-)mass ratio was 1.10 in Hefei,which indicated that mobile source emissions were predominant.Significant positive correlation coefficients between the concentrations of NH_4~+ and SO_4~(2-),NH_4~+ and NO_3~-,SO_4~(2-)and NO_3~-,and Mg~(2+) and Ca~(2+) were also indicated,suggesting that aerosol particles may be present as(NH_4)_2SO_4,NH_4HSO_4,and NH_4NO_3.  相似文献   

15.
春节期间南京气溶胶质量浓度和化学组成特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究春节期间燃放烟花爆竹对城市大气气溶胶质量浓度和化学组成分布特征的影响,对南京市2012年1月19~31日大气气溶胶质量浓度和水溶性离子及重金属等化学成分进行了观测.结果表明:烟花爆竹的大量集中燃放可使PM1.0的浓度以15.5μg/(m3·h)的速率增长;并使得能见度以1.625km/h的速率急剧下降.质量浓度谱和水溶性离子谱在燃放期均为三峰型分布,在非燃放期为双峰型分布.燃放期PM2.1和PM1.1中的K+、SO42-、NO3-、Cl-和Mg2+所占的比例比非燃放期升高了16%~38%,其他离子浓度变化不大.对于0.2~2.0μm的气溶胶,春节期间硝酸盐、含锌和含铜颗粒主要来自烟花爆竹燃放,含钾颗粒部分来自烟花爆竹燃放,含铅颗粒来自工业排放,烟花爆竹的燃放基本不产生硫酸盐颗粒.  相似文献   

16.
天津秋冬季PM2.5碳组分化学特征与来源分析   总被引:11,自引:2,他引:11       下载免费PDF全文
霍静  李彭辉  韩斌  陆炳  丁潇  白志鹏  王斌 《中国环境科学》2011,31(12):1937-1942
为研究天津大气PM2.5中有机碳和元素碳的特征,于2009年9月4日到2010年2月25日在天津3个监测点位采集PM2.5样品,分析了PM2.5颗粒中元素碳和有机碳的含量特征、与气象条件的相互关系、以及碳组分的来源.结果表明3个监测点位PM2.5的平均质量浓度为123.85μg/m3;TC的平均浓度为18.76μg/m3,其中OC的平均浓度为14.48μg/m3,EC的平均浓度为4.27μg/m3,日均OC和EC浓度分别占PM2.5的11.7%和3.5%.秋季SOC的估算值为5.1μg/m3, 占OC的40.7%、PM2.5的4.3%;冬季SOC的估算值为6.5μg/m3, 占OC的35.7%,PM2.5的4.9%.观测期间EC与温度呈比较好的负相关关系; OC、EC、TC的浓度与风速有较好的负相关性.48h后推气流轨迹结果显示局地盘旋的气流(L)和来自天津北方或西北方区域气流(N/NW)有较高的碳组分浓度;天津大气PM2.5中碳组分受包括生物质燃烧、汽车排放、燃煤和道路扬尘混合来源影响.  相似文献   

17.
采用傅里叶变换衰减全反射红外光谱法(ATR-FTIR)研究北京西北城区灰霾天气下PM_(2.5)中有机官能团(R-OH羟基、R-CH脂肪族碳氢基、R-CO-羰基、R-NO2硝基官能团)和无机离子(NH_4~+、SO_4~(2-)、NO_3~-)的变化规律.结果表明,PM_(2.5)中无机离子(NH_4~+、SO_4~(2-)、NO_3~-)的ATR-FTIR吸收峰值高于有机官能团(R-CH,R-CO-,R-NO_2,R-OH)的峰值;有机官能团R-CH的吸收峰峰值高于R-CO-和R-NO_2官能团的吸收峰,R-OH官能团的吸收峰峰值最低.灰霾天PM_(2.5)中各有机官能团和无机离子的ATR-FTIR吸收峰值明显高于非灰霾天.说明灰霾天气下PM_(2.5)中这些官能团及无机离子的质量浓度均高于非灰霾天.灰霾天PM_(2.5)中无机离子(NH_4~+、SO_4~(2-)、NO_3~-)质量浓度高于有机官能团(R-CH,R-CO-,R-NO_2,R-OH)的质量浓度,且有机官能团以R-CH为主,R-CO-,R-NO_2次之,R-OH最少.  相似文献   

18.
19.
基于PM、10nm~10μm气溶胶数谱、水溶性离子和气象要素数据,分析了2017年5月3日~8日一次沙尘远距离输送过程中长三角地区气溶胶粒径分布及其化学组成的污染特征.结果表明,此次沙尘伴随天气系统由北往南的传输过程中,PM的浓度逐渐降低,但是高浓度PM持续时间逐渐增加.沙尘在呼和浩特市影响时间为38h,而在南京的影响时间超过60h.沙尘期间气溶胶数浓度谱的峰值向大粒径段偏移,沙尘和非沙尘期间峰值分别位于33和26nm.表面积浓度谱在非沙尘期间为三峰型分布,但是在沙尘期间为四峰型分布.在沙尘期间PM2.5和PM10中水溶性离子的排序为Ca2+ > NH4+ > SO42- > NO3- > Mg2+ > Na+ > Cl- > NO2- > K+ > F-,非沙尘期间为NH4+ > SO42- > NO3- > Mg2+ > Ca2+ > Cl- > NO2- > K+ > Na+ > F-.沙尘期间不同水溶性离子的浓度变化不同,沙尘天PM2.5和PM10中Ca2+浓度分别是非沙尘天的9.5和13.7倍,Na+分别是非沙尘天的4.4倍和4.6倍.沙尘天PM2.5和PM10中Ca2+占总离子的比例分别为24.7%和24.9%,是非沙尘天的4.9和5.7倍.NO3-在PM10中的占总离子的比例为18.7%,高于非沙尘天(13.9%),但是在PM2.5中占总离子的比例仅为7.9%,低于非沙尘天(13.2%).沙尘天F-、Cl-、SO42-、NH4+和K+离子在PM2.5和PM10中所占总离子的比例均低于非沙尘天.  相似文献   

20.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号