共查询到20条相似文献,搜索用时 15 毫秒
1.
Xue Han Xin Ji Xuan Ma Jun-Ling Liu Zhen-Yu He Wei Chang Fei Tang Ai-Lin Liu 《环境科学学报(英文版)》2020,32(1):310-318
Changes in water quality from source water to finished water and tap water at two conventional drinking water treatment plants(DWTPs) were monitored.Beside the routine water quality testing,Caenorhabditis elegans-based toxicity assays and the fluorescence excitation–emission matrices technique were also applied.Both DWTPs supplied drinking water that met government standards.Under current test conditions,both the investigated finished water and tap water samples exhibited stronger lethal,genotox... 相似文献
2.
Drinking water quality deteriorates from treatment plant to customer taps, especially in the plumbing system. There is no direct evidence about what the differences are contributed by plumbing system. This study compared the water quality in the water main and at customer tap by preparing a sampling tap on the water main. The biomass was quantified by adenosine triphosphate (ATP) and the microbial community was profiled by 454 pyrosequencing. The results showed that in distribution pipes, biofilm contributed >94% of the total biomass, while loose deposits showed little contribution (< 2%) because of the low amount of loose deposits. The distribution of biological stable water had minor effects on the microbiocidal water quality regarding both quantity (ATP 1 ng/L vs. 1.7 ng/L) and community of the bacteria. Whereas the plumbing system has significant contribution to the increase of active biomass (1.7 ng/L vs. 2.9 ng/L) and the changes of bacterial community. The relative abundance of Sphingomonas spp. at tap (22%) was higher than that at water main (2%), while the relative abundance of Pseudomonas spp. in tap water (15%) was lower than that in the water from street water main (29%). Though only one location was prepared and studied, the present study showed that the protocol of making sampling tap on water main offered directly evidences about the impacts of plumbing system on tap water quality, which makes it possible to distinguish and study the processes in distribution system and plumbing system separately. 相似文献
3.
<正>Delivery of safe and pathogen-free drinking water is crucial to public health.However,there exist challenges to the maintenance of the sterility of drinking water throughout the drinking water distribution systems(DWDS).Microbial growth in DWDS,such as growth of opportunistic pathogenic microorganisms,can lead to severe health problems in consumers(Berry et al.,2006;Brettar and Hofle,2006;Lu et al.,2014;Zhang et al.,2015). 相似文献
4.
Significant iron release from cast iron pipes in water distribution systems (WDSs), which usually occurs during the source water switch period, is a great concern of water utilities because of the potential occurrence of “red water” and customer complaints. This study developed a new method which combined in-situ water stagnation experiments with mathematical models and numerical simulations to predict the iron release caused by source water switch. In-situ water stagnation experiments were conducted to determine the total iron accumulation in nine cast iron pipes in-service in Beijing when switching the local water to treated Danjiangkou Reservior water. Results showed that the difference in the concentration increment of total iron in 24 hr (ΔCITI,24), i.e. short-term iron release, caused by source water switch was mainly dependent on the difference in the key quality parameters (pH, hardness, nitrate, Larson Ratio and dissolved oxygen (DO)) between the two source waters. The iron release rate (RFe) after switch, i.e. long-term iron release, was closely related to the pipe properties as well as the DO and total residual chlorine (TRC) concentrations. Mathematical models of ΔCITI,24 and RFe were developed to quantitatively reveal the relationship between iron release and the key quality parameters. The RFe model could successfully combine with EPANET-MSX, a numerical simulator of water quality for WDSs to extend the iron release modeling from pipe level to network level. The new method is applicable to predicting iron release during source water switch, thus facilitating water utilities to take preventive actions to avoid “red water”. 相似文献
5.
Zibo Jing Zedong Lu Zhinan Zhao Wenfeng Cao Weibo Wang Yanchu Ke Xiaohui Wang Wenjun Sun 《环境科学学报(英文版)》2023,35(2):176-186
Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies. However, previous studies have focused on the microbial composition and diversity of the drinking water distribution systems(DWDSs), with little discussion on microbial molecular ecological networks(MENs) in different water supply networks.MEN analysis explores the potential microbial interaction and the impact of environmental stress, to explain the characteristics of microbial... 相似文献
6.
The decay and distribution of bacterial pathogens in water is an important information for the health risk assessment to guide water safety management, and suspended algae might affect bacterial pathogens in water. This study established microcosms to investigate the effects of algae-related factors on the representative indicators and opportunistic pathogen species in water. We found that suspended algae increased the persistence of targeted species by 1-2 orders of magnitude of concentrations ... 相似文献
7.
Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe3O4 in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O3-biological activated carbon filtration-UV-Cl2 treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs. 相似文献
8.
To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV treatment on microbial control and disinfection byproducts(DBPs) formation in real municipal drinking water systems are poorly understood.Here,we collected water samples from three real drinking water systems in Beijing and Tianjin to investigate the impacts of UV treatment on microbia... 相似文献
9.
Lacustrine sediment played important roles in migration and transformation of its water soluble organic matter(WSOM), and the source and composition of WSOM would affect water trophic status and the fate of pollutants. However, we know little about the pathway of WSOM transformation and its driving bacterial communities in lacustrine sediment. In the present study, we investigated the spatial distribution patterns of sediment WSOM and its fluorescent fractions across Lake Chaohu using fluorescen... 相似文献
10.
针对饮用水源污染和水质安全风险及藻类、臭味、氨氮、砷等有毒有害物质去除的技术难题,“十一五”“十二五”期间,“水专项”研发了水源调控、水质净化、管网输配和水质监测、预警应急、安全管理等关键技术,构建了以臭氧-活性炭、膜分离等为核心的饮用水安全保障多级屏障工艺,实现了关键装备与材料的国产化,形成了“从源头到龙头”全流程饮用水安全保障技术体系,并在太湖流域、南水北调受水区进行了规模化示范应用,累计示范与推广应用的供水规模超过1 000万m 3/d,直接受益人口达8 000万人以上,技术支撑全国城市供水水质达标率由2009年的58.2%提高到目前的96.0%以上,也为全国城乡供水规划、城镇供水水质督察和供水应急救援基地建设等提供了体系性的技术支撑。 相似文献
11.
Haihan Zhang Yinjie Shi Tinglin Huang Rongrong Zong Zhenfang Zhao Ben Ma Nan Li Shangye Yang Mengqiao Liu 《环境科学学报(英文版)》2023,35(2):215-226
The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well.In this study,quantitative polymerase chain reaction (qPCR) and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structur... 相似文献
12.
Potable water is a resource out of reach for millions worldwide,and the available water may be chemically and microbiologically compromised. This is particularly acute in Africa,where water-networks may be non-existent or restricted to a small fraction of the urban population,as in the case of Guinea-Bissau,West Africa. This study was carried out seasonally in Bolama(11°N),where unprotected hand-dug wells with acidic water are the sole source of water for the population. We inspected the free-living bacterial community dynamics by automated rRNA intergenic spacer analyses,quantitative polymerase chain reaction and cloning approaches.The results revealed a clear seasonal shift in bacterial assemblage composition and microbial abundance within the same sampling site. Temperature,pH and turbidity,together with the infiltration and percolation of surface water,which takes place in the wet season,seemed to be the driving factors in the shaping and selection of the bacterial community and deterioration of water quality. Analysis of 16 S rDNA sequences revealed several potential pathogenic bacteria and uncultured bacteria associated with water and sediments,corroborating the importance of a culture-independent approach in drinking water monitoring. 相似文献
13.
Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems(DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically activated carbon and chlorination(O_3-BAC-Cl_2);ozone and chlorination(O3-Cl_2); or chlorination alone(Cl_2). The lowest corrosion rate and iron release, along with more Fe_3O_4 formation, occurred in DWDSs with O_3-BAC-Cl_2 compared to those without a BAC filter. It was verified that O_3-BAC influenced the bacterial community greatly to promote the relative advantage of nitrate-reducing bacteria(NRB)in DWDSs. Moreover, the advantaged NRB induced active Fe(III) reduction coupled to Fe(II) oxidation, enhancing Fe_3O_4 formation and inhibiting corrosion. In addition, O_3-BAC pretreatment could reduce high-molecular-weight fractions of dissolved organic carbon effectively to promote iron particle aggregation and inhibit further iron release. Our findings indicated that the O_3-BAC treatment, besides removing organic pollutants in water, was also a good approach for controlling cast iron corrosion and iron release in DWDSs. 相似文献
14.
Dissolved organic nitrogen (DON) has attracted much attention in drinking water treatment due to its potential to produce nitrogenous disinfection by-products (N-DBPs). This work was designed to explore the transformation and fate of DON and dissolved inorganic nitrogen (DIN) in drinking water treatment. The changes of DON and formation of N-DBPs were evaluated along the water treatment route (i.e., pre-ozonation and biological-contact oxidation, delivery pipes’ transportation, coagulation-sedimentation, sand filtration, post-ozonation, biological activated carbon, ultrafiltration and disinfection) of drinking water treatment plant (DWTP). The transformation mechanism of DON was comprehensively investigated by molecular weight fractionation, three-dimensional fluorescence, LC-OCD (Liquid Chromatography-Organic Carbon Detection), total free amino acids. A detailed comparison was made between concentrations and variations of DON and DIN affected by seasons in the drinking water treatment. Regardless of seasonal variation in raw water concentration, the DON removal trends between different treatment processes remain constant in the present study. Compared to other treatment processes, pre-ozonation and coagulation-sedimentation exhibited the dominant DON removal in different seasons, i.e., 11.13%-14.45% and 14.98%-22.49%, respectively. Contrary, biological-contact oxidation and biological activated carbon negatively impacted the DON removal, in which DON increased by 1.76%-6.49% in biological activated carbon. This may be due to the release of soluble microbial products (SMPs) from bacterial metabolism, which was further validated by the rise of biopolymers in LC-OCD. 相似文献
15.
Four sampling campaigns were conducted in two years to understand the fluctuation of N-Nitrosamines(NAs) and their precursors in one drinking water treatment plant(DWTP) in East China in different seasons.This water supply system has been facing several nitrosamine challenges related with source water, including the switch of water source,high concentration of ammonium, formed NAs and NA formation potential(FP) in source water.Besides, the use of ozonation in the DWTP and chloramination in netwo... 相似文献
16.
Hongjie Wang Xingchun Liu Yali Wang Shengqi Zhang Guangming Zhang Yangyang Han Mengxiang Li Ling Liu 《环境科学学报(英文版)》2023,35(2):187-197
The temporal and spatial characteristics of urban river bacterial communities help us understand the feedback mechanism of bacteria to changes in the aquatic environment.The Fuhe River plays an important role in determining the water ecological environment of Baiyangdian Lake.16S rRNA gene sequencing was used to study the microbial distribution characteristics in the Fuhe River in different seasons.The results showed that some environmental factors of the surface water (ammonia nitrogen (NH... 相似文献
17.
Yujie Sha Huan Wu Yue Guo Xi Liu Yan Mo Qiyuan Yang Shumao Wei Kunling Long Du Lu Ying Xia Weiwei Zheng Zhiheng Su Xiao Wei 《环境科学学报(英文版)》2022,34(7):91-104
Iodoacetic acid(IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague–Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage.... 相似文献
18.
Yanan Yin Chao Yang Jingrui Tang Jie Gu Haichao Li Manli Duan Xiaochang Wang Rong Chen 《环境科学学报(英文版)》2021,33(10):84-95
Microbial enzymes are crucial for material biotransformation during the composting process. In this study, we investigated the effects of adding bamboo charcoal (BC) (i.e., at 5%, 10%, and 20% corresponding to BC5, BC10, and BC20, respectively) on the enzyme activity levels during chicken manure composting. The results showed that BC10 could increase the cellulose and urease activities by 56% and 96%, respectively. The bacterial community structure in BC10 differed from those in the other treatments, and Luteivirga, Lactobacillus, Paenalcaligenes, Ulvibacter, Bacillus, Facklamia, Pelagibacterium, Sporosarcina, Cellvibrio, and Corynebacterium had the most important roles in composting. Compared with other treatments, BC10 significantly enhanced the average rates of degradation of carbohydrates (D-xylose (40%) and α-D-lactose (44%)) and amino acids (L-arginine (16%), L-asparagine (14%), and L-threonine (52%)). We also explored the associations among the bacterial community and their metabolic functions with the changes in the activities of enzymes. Network analysis demonstrated that BC10 altered the co-occurrence patterns of the bacterial communities, where Ulvibacter and class Bacilli were the keystone bacterial taxa with high capacities for degrading carbon source, and they were related to increases in the activities of cellulase and urease, respectively. The results obtained in this study may help to further enhance the efficiency of composting. 相似文献
19.
为弄清饮用水常规处理工艺过程中细菌群落的时空分布和动态变化规律,以我国南方某市一常规处理工艺水厂为研究对象,采用Illumina HiSeq高通量测序技术对夏季和冬季原水、沉后水、滤后水、出厂水和滤砂生物膜等细菌群落进行解析.结果表明,出厂水pH值、浊度、CODMn、菌落总数等指标均满足《生活饮用水卫生标准》(GB5749-2006)的要求.夏季细菌多样性明显高于冬季,混凝沉淀和消毒是影响细菌群落多样性和组成的主要工艺单元.细菌群落组成呈现一定的季节性变化,水样中优势菌门主要包括变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、蓝细菌门(Cyanobacteria)等,在滤砂生物膜样品中,变形菌门(Proteobacteria)亦占绝对优势.在属水平上,检测到的条件致病菌属包括弧形菌属(Vibrio)、不动杆菌属(Acinetobacter)和分支杆菌属(Mycobacterium).水温和溶解氧是影响细菌群落的主要水质参数. 相似文献
20.
为弄清饮用水常规处理工艺过程中细菌群落的时空分布和动态变化规律,以我国南方某市一常规处理工艺水厂为研究对象,采用Illumina HiSeq高通量测序技术对夏季和冬季原水、沉后水、滤后水、出厂水和滤砂生物膜等细菌群落进行解析.结果表明,出厂水pH值、浊度、CODMn、菌落总数等指标均满足《生活饮用水卫生标准》(GB5749-2006)的要求.夏季细菌多样性明显高于冬季,混凝沉淀和消毒是影响细菌群落多样性和组成的主要工艺单元.细菌群落组成呈现一定的季节性变化,水样中优势菌门主要包括变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、蓝细菌门(Cyanobacteria)等,在滤砂生物膜样品中,变形菌门(Proteobacteria)亦占绝对优势.在属水平上,检测到的条件致病菌属包括弧形菌属(Vibrio)、不动杆菌属(Acinetobacter)和分支杆菌属(Mycobacterium).水温和溶解氧是影响细菌群落的主要水质参数. 相似文献