首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds(WSOCs) and their effects on ammonium sulfate(AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer(HTDMA) in the relative humidity(RH) range of 5%–90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model(E-AIM) and Zdanovskii–Stokes–Robinson(ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles.When organic content was dominant in the mixture(75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles.  相似文献   

2.
The formation of nitric acid hydrates has been observed in a chamber during the dark reaction of NO2 with O3 in the presence of air. The size of condensed phase nitric acid was measured to be 40–100 nm and 20–65 nm at relative humidity (RH) 6 5% and RH = 67% under our experimental conditions, respectively. The nitric acid particles were collected on the glass fiber membrane and their chemical compositions were analyzed by infrared spectrum. The main components of nitric acid hydrates in particles are HNO3 3H2O and NO3?? xH2O (x> 4) at low RH, whereas at high RH HNO3 H2O, HNO3 2H2O, HNO3 3H2O and NO3?? xH2O (x> 4) all exist in the condensed phase. At high RH HNO3 xH2O (x 6 3) collected on the glass fiber membrane is greatly increased, while NO3?? xH2O (x > 4) decreased, compared with low RH. To the best of our knowledge, this is the first time to report that condensed phase nitric acid can be generated in the gas phase at room temperature.  相似文献   

3.
This paper presents the results from using a physical absorption process to absorb gaseous CO_2mixed with N_2using water by producing tiny bubbles via a liquid-film-forming device(LFFD)that improves the solubility of CO_2in water.The influence of various parameters—pressure,initial CO_2concentration,gas-to-liquid ratios,and temperature—on the CO_2removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method(RSM)with a central composite design(CCD).Based on the analysis,a high efficiency of CO_2capture can be reached in conditions such as low pressure,high CO_2concentration at the inlet,low gas/liquid ratio,and low temperature.For instance,the highest removal efficiency in the RSM–CCD experimental matrix of nearly 80%occurred for run number 20,which was conducted at 0.30 MPa,CO_2concentration of 35%,gas/liquid ratio of 0.71,and temperature of 15°C.Furthermore,the coefficients of determination,R~2,were 0.996 for the removal rate and 0.982 for the absorption rate,implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values.The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO_2capture in air pollution treatment.  相似文献   

4.
Compressed natural gas(CNG)is most appropriate an alternative of conventional fuel for automobiles.However,emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment.Consequently,to abate emissions from CNG vehicles,development of highly efficient and inexpensive catalysts is necessary.Thus,the present work attempts to scan the effects of precipitants(Na_2CO_3,KOH and urea)for nickel cobaltite(Ni Co_2O_4)catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C.The catalysts were used for oxidation of a mixture of CO and CH_4(1:1).The catalysts were characterized by X-ray diffractometer,Brunauer–Emmett–Teller surface-area,X-ray photoelectron spectroscopy;temperature programmedreductionandScanningelectronmicroscopycoupledwith Energy-Dispersive X-Ray Spectroscopy.The Na_2CO_3was adjudged as the best precipitant for production of catalyst,which completely oxidized CO-CH_4mixture at the lowest temperature(T_(100)=350°C).Whereas,for catalyst prepared using urea,T_(100)=362°C.On the other hand the conversion of CO-CH_4mixture over the catalyst synthesized by KOH limited to 97%even beyond 400°C.Further,the effect of higher calcination temperatures of 500 and600°C was examined for the best catalyst.The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively.Thus,the best precipitant established was Na_2CO_3and the optimum calcination temperature of 400°C was found to synthesize the Ni Co_2O_4catalyst for the best performance in CO-CH_4oxidation.  相似文献   

5.
Studies concerning the emission of carbon dioxide(CO_2) were carried out in 2009–2012 for six reservoirs located in four provinces of south-eastern Poland. The CO_2 flux across the water–air interface was measured using the "static chamber" method. The measured fluxes of CO_2(FCO_2) ranged from-30.64 to 183.78 mmol/m~2/day, and the average values varied in the range from-3.52 to 82.11 mmol/m2/day. In most of the cases, emission of CO_2 to the atmosphere was observed. The obtained values of CO_2 fluxes were comparable to values typical for other temperate reservoirs. Analysis of the influence of selected environmental factors on the FCO_2 showed that it depends on parameters characterizing both the sediments and surface water. The CO_2 flux at the water–air interface was positively correlated with parameters of bottom sediments such as porosity, content of organic carbon and total nitrogen; and negatively with p H value and δ~(13)C of organic carbon. In the case of the parameters characterizing surface water, positive dependences on the concentrations of nitrate and total nitrogen, and negative relationships with water temperature and chlorophyll a concentrations, were found.  相似文献   

6.
Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions. The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment. The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions, which are beneficial for broadening the selectivity of low-cost magnetic particles. The critical magnetic separation region was determined to be an area 40 mm from the magnetic field source. Compared to the flocculant demulsification, the magnetic demulsification separation exhibited a significant advantage in accelerating flocs–water separation by decreasing the separation time of flocs from 180–240 min to less than 15 min, compressing the flocs by reducing the floc volume ratio from 60%–90% to lower than 20%, and showing excellent adaptability to the variable properties of waste cutting emulsions. Coupled with the design of the magnetic disk separator, continuous demulsification separation of the waste cutting emulsion was achieved at 1.0 t/hr for at least 10 hr to obtain clear effluent with 81% chemical oxygen demand removal and 89% turbidity reduction. This study demonstrates the feasibility of applying magnetic demulsification separation to large-scale continuous treatment of waste emulsion. Moreover, it addresses the flocs–water separation problems that occur in practical flocculant demulsification engineering applications.  相似文献   

7.
We herein used Fe3O4 nanoparticles(NPs) as an adsorption interface for the concurrent removal of gaseous benzene, toluene, ethylbenzene and m-xylene(BTEX) and sulfur dioxide(SO2), at different relative humidities(RH). X-ray diffraction, Brunauer–Emmett–Teller, and transmission electron microscopy were deployed for nanoparticle surface characterization.Mono-dispersed Fe3O4(Fe2O3·Fe O) NPs synthesized with oleic acid(OA) as surfactant, and uncoated poly-dispersed Fe3O4 NPs demonstrated comparable removal efficiencies.Adsorption experiments of BTEX on NPs were measured using gas chromatography equipped with flame ionization detection, which indicated high removal efficiencies(up to(95 ± 2)%) under dry conditions. The humidity effect and competitive adsorption were investigated using toluene as a model compound. It was observed that the removal efficiencies decreased as a function of the increase in RH, yet, under our experimental conditions, we observed(40 ± 4)% toluene removal at supersaturation for Fe3O4 NPs, and toluene removal of(83 ± 4)% to(59 ± 6)%, for OA-Fe3O4 NPs. In the presence of SO2, the toluene uptake was reduced under dry conditions to(89 ± 2)% and(75 ± 1)% for the uncoated and coated NPs, respectively, depicting competitive adsorption. At RH 100%,competitive adsorption reduced the removal efficiency to(27 ± 1)% for uncoated NPs whereas OA-Fe3O4 NPs exhibited moderate efficiency loss of(55 ± 2)% at supersaturation.Results point to heterogeneous water coverage on the NP surface. The magnetic property of magnetite facilitated the recovery of both types of NPs, without the loss in efficiency when recycled and reused.  相似文献   

8.
Cu–Mn, Cu–Mn–Ce, and Cu–Ce mixed-oxide catalysts were prepared by a citric acid sol–gel method and then characterized by XRD, BET, H_2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu–Mn–Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu–Mn–Ce catalyst, a portion of Cu and Mn species entered into the Ce O_2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu–Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu–Mn and Cu–Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.  相似文献   

9.
A submerged internal circulating membrane coagulation reactor(MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride(PACl) was used as coagulant,and a hydrophilic polyvinylidene fluoride(PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure(TMP), zeta potential(ZP) of the suspended particles in raw water, and KMnO_4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China(GB 5749-2006), as evaluated by turbidity(1 NTU) and total organic carbon(TOC)(5 mg/L)measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon(DOC) in the raw water also increased with increasing TMP in the range of 0.01–0.05 MPa. High ZP induced by PACl, such as 5–9 mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity.However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1–2 mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO_4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes.  相似文献   

10.
Double perovskite-type catalysts including La2 CoMnO_6 and La_2 CuMnO_6 are first evaluated for the effectiveness in removing volatile organic compounds(VOCs), and single perovskites(La CoO_3, LaMnO_3, and La Cu O3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity(GHSV) of 30,000 hr~(-1), and the temperature range of100–600°C for C_7H_8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene(C_7H_8) can be completely oxidized to CO_2 at 300°C as La2 Co MnO_6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen,leading to higher activity. Additionally, apparent activation energy of 68 k J/mol is calculated using Mars-van Krevelen model for C7 H8 oxidation with La2 Co Mn O6 as catalyst. For durability test, both La2 Co Mn O6 and La_2 CuMnO_6 maintain high C7 H8 removal efficiencies of 100% and98%, respectively, at 300°C and 30,000 hr~(-1), and they also show good resistance to CO_2(5%) and H2 O(g)(5%) of the gas streams tested. For various VOCs including isopropyl alcohol(C_3H_8 O),ethanal(C_2H_4O), and ethylene(C_2H_4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300–350°C, indicating that double perovskites are promising catalysts for VOCs removal.  相似文献   

11.
Endocrine disrupting compounds(EDCs) and pharmaceuticals pose a challenge for water and wastewater treatment because they exist at very low concentrations in the presence of substances at much higher concentrations competing for adsorption sites.Sub-micron sized resin particles(approximately 300 nm in diameter)(SMR) were tested to evaluate their potential as a treatment for EDCs including:17-β estradiol(E2),17-α ethinylestradiol(EE2),estrone(E1),bisphenol A(BPA),and diethylstilbestrol(DES) as well as 12 pharmaceuticals.SMR were able to remove 98%of spiked E2,80%of EE2,87%of BPA,and up to 97%of DES from water.For a 0.5 ppm mixture of E2,EE2,E1,BPA and DES,the minimum removal was24%(E2) and the maximum was 49%(DES).They were also able to remove the pharmaceuticals from deionized water and wastewater.Overall,SMR are a promising advanced treatment for removal of both EDCs and pharmaceuticals.  相似文献   

12.
Photodegradation(PD) of methylmercury(MMHg) is a key process of mercury(Hg) cycling i water systems, maintaining MMHg at a low level in water systems. However, we posses little knowledge of this important process in the Jialing River of Chongqing, China. In sit incubation experiments were thus performed to measure temporal patterns and influencin factors of MMHg PD in this river. The results showed that MMHg underwent a ne demethylation process under solar radiation in the water column, which predominantl occurred in surface waters. For surface water, the highest PD rate constants were observed i spring(12 × 10-3± 1.5 × 10~(-3)m~2/E), followed by summer(9.0 × 10~(-3)± 1.2 × 10~(-3)m~2/E), autum(1.4 × 10~(-3)± 0.12 × 10~(-3)m~2/E), and winter(0.78 × 10~(-3)± 0.11 × 10~(-3)m~2/E). UV-A radiatio(320–400 nm), UV-B radiation(280–320 nm), and photosynthetically active radiation(PAR400–700 nm) accounted for 43%–64%, 14%–31%, and 16%–45% of MMHg PD, respectively. PD rat constants varied substantially with the treatments that filtered the river water and amended with chemicals(i.e., Cl-, NO_3~-, dissolved organic matter(DOM), Fe(III)), which reveals tha suspended particulate matter and water components are important factors in affecting the PD process. For the entire water column, the PD rate constant determined for each wavelengt range decreased rapidly with water depth. UV-A, UV-B, and PAR contributed 27%–46%, 6.2%12%, and 42%–65% to the PD process, respectively. PD flux was estimated to be 4.7 μg/(m~2·yea in the study site. Our results are very important to understand the cycling characteristics o MMHg in the Jialing River of Chongqing, China.  相似文献   

13.
Mineral dust particles play an important role in the formation of secondary inorganic aerosols, which largely contribute to haze pollution in China.During this study, a haze episode(haze days) and a typical haze process mixed with sandstorm(sandy haze days)were observed in Zhengzhou with a series of high-time-resolution monitoring instruments from November 22 to December 8, 2018.Concentrations of PM_(10) and crustal elements clearly increased in the sandy haze days.Concentrations of gaseous pollutants, metallic elements emitted from anthropogenic sources, nitrate, and ammonium during sandy haze days were slightly lower than those during the haze days but still obviously higher than those during the non-haze days.The sulfate concentrations, the sulfate fractions in PM_(2.5),and the sulfur oxidation ratios significantly increased in the sandy haze days.Heterogeneous reactions dominated the conversion of SO_2 during the haze and sandy haze days.Enhanced SO_2 conversion during the sandy haze days may be attributed to the high concentrations of transition metal ions from the sandstorm when the values of relative humidity(RH) were in 30%–70%, and high O_3 at certain time points.Gas-phase NO_2 oxidation reactions were the main pathways for nitrate formation.In the sandy haze days,higher nitrogen oxidation ratio(NOR) at daytime may be associated with higher RH and lower temperature than those in the haze days, which facilitate the gas-to-particle partitioning of nitrate; higher NOR values at night may be attributed to the higher O_3 concentrations, which promoted the formation of N_2O_5.  相似文献   

14.
17β-Estradiol (E2) is an endocrine disrupting chemical of harm to both animals and human beings at a low concentration level (ng/L). It cannot be completely removed by wastewater treatments, and is often detected in both environment and drinking waters. The purpose of this feasibility study, towards environmental engineering in the field of water analysis and treatment, was to remove E2 by extraction using non-imprinted polymer (NIP) submicron particles. Experimental results showed that 0.5 mg/L of E2 could be completely extracted by adding 10 mg of NIP particles directly into 10 mL of water. However, the extraction efficiency decreased to 64% for 100 mL of water. prefilling the NIP particles inside a membrane filter showed a potential for water treatment of a large volume, requiring no effort to distribute the particles uniformly in the water. High extraction efficiency (80 ± 10)% for E2 was achieved for 100 mL of water. A total mass of 0.29 mg E2 was extracted from 1000 mL of water containing 0.8 mg/L E2 (by using only 10 mg of NIP particles). Both efficiency and mass capacity can be increased, by scaling up the amount of NIP particles, towards environmental engineering applications.  相似文献   

15.
This article describes the integrated modeling approach for planning the size and the operation of constructed wetlands for maximizing retention of nonpoint source pollutant loads and reservoir water-quality improvement at a catchment scale.The experimental field-scale wetland systems (four sets,0.88 ha each) have been in operation since 2002,where water depth was maintained at 30–50 cm and hydraulic loading rate was at 6.3–18.8 cm/day.The wetland system was found to be adequate for treating polluted stream water with stable removal efficiency even during the winter.The integrated modeling system (modified-BASINS) was applied to the Seokmoon estuarine reservoir watershed and calibrated with monitoring data from constructed wetland,stream,and reservoir.The calibrated integrated modeling system estimated that constructing wetlands on 0.5% (about 114 ha) of the watershed area at the mouth of reservoir could reduce 11.61% and 13.49% of total external nitrogen and phosphorus loads,respectively.It also might improve the nitrogen and phosphorus concentration of the reservoir by 9.69% and 16.48%,respectively.The study suggested that about 0.1%–1.0% of the watershed area should be allocated for constructed wetland to meet specified water-quality standards for the estuarine reservoir at the polder area where land use planning is relatively less complicated.  相似文献   

16.
We report the application of a solid lanthanum–ceria–zinc catalyst in the catalytic regeneration of diesel particulate filters(DPF) in diesel engines.We synthesized a CeO_2–ZnO–La_2O_3(Ce–Zn–La) mixed oxide by a lactic acid-mediated sol–gel method,which efficiently coated cordierite substrates for soot capture and combustion.We studied the effects of La loading on the physicochemical and catalytic properties of Ce–Zn mixed oxide during lowtemperature soot combustion processes.We characterized the synthesized catalysts by X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FTIR),N2 adsorption,Raman spectroscopy,oxygen storage capacity(OSC),and scanning and transmission electron microscopy(SEM and TEM).Thermogravimetric and differential thermal analysis(TGA/DTA)confirmed that the catalysts effectively reduced the soot oxidation temperature.The ternary Ce–Zn–La mixed oxide catalyst with Ce/Zn/La atomic ratio of 2:1:0.5 had the highest catalytic activity and promoted soot oxidation at temperatures below 390°C.This indicated that the large number of oxygen vacancies in the catalyst structure generated oxygen species at low temperatures.Raman spectroscopy measurements revealed the presence of oxygen vacancies and lattice defects in Ce–Zn–La samples,which were key parameters concerning the stability and redox properties of the prepared catalysts.  相似文献   

17.
When exposed to different relative humidities (RHs), the optical properties of atmospheric aerosols will change because of changes in the aerosol particle size and complex refractive index (RI), which will affect haze formation and global climate change. The potential contributions of ultrafine particles to the atmospheric optical characteristics and to haze spreading cannot be ignored because of their high particle number concentrations and strong diffusibility; measurement of the optical properties of wet ultrafine particles is thus highly important for environmental assessment. Therefore, a surface plasmon resonance microscopy with azimuthal rotation illumination (SPRM-ARI) system is designed to determine the RIs of single particle aerosols with diameters of less than 100 nm in the hygroscopic growth process. Measurements are taken using mixed single particles with different mass ratios. The RIs of mixed single aerosols at different RHs are retrieved by measuring the scattering light intensity using the SPRM-ARI system and almost all the RIs of the bicomponent particles with different mass ratios decrease with increasing water content under high RH conditions. Finally, for each of the bicomponent particles, the maximum standard deviations for the retrieved RI values are only 2.06×103, 3.08×103 and 3.83×103, corresponding to the NaCl and NaNO3 bicomponent particles with a 3:1 mass ratio at 76.0% RH, the NaCl and glucose particles with a 1:3 mass ratio at 89.0% RH, and the NaCl and OA particles with a 1:1 mass ratio at 78.0% RH, respectively; these results indicate that the high-sensitivity SPRM-ARI system can measure the RI effectively and accurately.  相似文献   

18.
This study presents the emission factor of gaseous pollutants(CO, CO_2, and NO X) from on-road tailpipe measurement of 14 passenger cars of different types of fuel and vintage. The trolley equipped with stainless steel duct, vane probe velocity meter, flue gas analyzer, Nondispersive infra red(NDIR) CO_2 analyzer, temperature, and relative humidity(RH) sensors was connected to the vehicle using a towing system. Lower CO and higher NO X emissions were observed from new diesel cars(post 2010) compared to old cars(post 2005), which implied that new technological advancement in diesel fueled passenger cars to reduce CO emission is a successful venture,however, the use of turbo charger in diesel cars to achieve high temperature combustion might have resulted in increased NO X emissions. Based on the measured emission factors(g/kg), and fuel consumption(kg), the average and 95% confidence interval(CI) bound estimates of CO, CO_2,and NO X from four wheeler(4W) in Delhi for the year 2012 were 15.7(1.4–37.1), 6234(386–12,252),and 30.4(0.0–103) Gg/year, respectively. The contribution of diesel, gasoline and compressed natural gas(CNG) to total CO, CO_2 and NO X emissions were 7:84:9, 50:48:2 and 58:41:1respectively. The present work indicated that the age and the maintenance of vehicle both are important factors in emission assessment therefore, more systematic repetitive measurements covering wide range of vehicles of different age groups, engine capacity, and maintenance level is needed for refining the emission factors with CI.  相似文献   

19.
Tunnel displays a typical semi-closed environment, and multitudes of the pollutants tend to accumulate. The samples of gaseous pollutants and particulate matter(PM) were collected from the Xiangyin tunnel at Shanghai to investigate the characteristics of the pollutant emissions. The results indicated that both gaseous pollutants and PM exhibited much higher concentrations during the rush hours in the morning and at night due to vehicle emission. Two peaks of the PM concentration were observed in the scope of 0.7‐1.1 and 3.3–4.7 μm, accounting for 14.6% and 20.3% of the total concentrations, respectively.Organic matter(OM), EC, and many water-soluble ions were markedly higher at the rush hours in the morning than those at night, implicating comprehensive effects of vehicle types and traffic volume. The particle number concentrations exhibited two peaks at Aitken mode(25 nm and 100 nm) and accumulation mode(600 nm), while the particle volume concentration displayed high values at the accumulation mode(100–500 nm) and coarse mode(2.5–4.0 μm). The peak around 100 nm was detected in the morning rush hours, but it diminished with the decrease of the traffic volume. Individual-particle analysis revealed that main particles in the tunnel were Fe-rich particles, K-rich particles, mineral particles,Ca–S rich particles and Al–Si particles. The particles collected at the rush hours displayed marked different morphologies, element concentrations and particle sizes compared to the ones collected at the non-rush period. The data presented herein could shed a light on the feature of vehicle emissions.  相似文献   

20.
Surface-active organic molecules (surfactants) may influence the ability of an aerosol particle to act as a cloud condensation nuclei by reducing its surface tension. One source of organic mass in aerosol particles, which may also contain surfactants, is bubble bursting on the sea surface. In order to directly compare these molecules in the ocean and aerosol particles, we developed a method using multiple solid phase extractions and high resolution mass spectrometry to characterize surface active organic molecules in both. This method has extraction efficiencies greater than 85%, 75%, and 60% for anionic, cationic, and nonionic surfactant standards, respectively. In this study, we demonstrate the presence of three ionic classes of surface active organics in atmospheric aerosol particles and estuarine water from Skidaway Island, GA. With this extraction method, organic molecules from both estuarine water and atmospheric aerosol particles significantly reduced surface tension of pure water (surface tension depression of ~ 18 mN/m) and had high ratios of hydrogen to carbon (H/C) and low ratios of oxygen to carbon (O/C), indicative of surfactants. While previous work has observed a larger fraction of anionic surface active organics in seawater and marine aerosol particles, here we show cationic surface active organics may make up a large fraction of the total surface active molecules in estuarine water (43%–47%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号