首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study profiled the bacterial community variations of water from four water treatment systems,including coagulation,sedimentation,sand filtration,ozonation-biological activated carbon filtration(O3-BAC),disinfection,and the tap water after the distribution process in eastern China.The results showed that different water treatment processes affected the bacterial community structure in different ways.The traditional treatment processes,including coagulation,sedimentation and sand f...  相似文献   

2.
Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies. However, previous studies have focused on the microbial composition and diversity of the drinking water distribution systems(DWDSs), with little discussion on microbial molecular ecological networks(MENs) in different water supply networks.MEN analysis explores the potential microbial interaction and the impact of environmental stress, to explain the characteristics of microbial...  相似文献   

3.
The qualified finished water from water treatment plants (WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems (DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.  相似文献   

4.
Significant iron release from cast iron pipes in water distribution systems (WDSs), which usually occurs during the source water switch period, is a great concern of water utilities because of the potential occurrence of “red water” and customer complaints. This study developed a new method which combined in-situ water stagnation experiments with mathematical models and numerical simulations to predict the iron release caused by source water switch. In-situ water stagnation experiments were conducted to determine the total iron accumulation in nine cast iron pipes in-service in Beijing when switching the local water to treated Danjiangkou Reservior water. Results showed that the difference in the concentration increment of total iron in 24 hr (ΔCITI,24), i.e. short-term iron release, caused by source water switch was mainly dependent on the difference in the key quality parameters (pH, hardness, nitrate, Larson Ratio and dissolved oxygen (DO)) between the two source waters. The iron release rate (RFe) after switch, i.e. long-term iron release, was closely related to the pipe properties as well as the DO and total residual chlorine (TRC) concentrations. Mathematical models of ΔCITI,24 and RFe were developed to quantitatively reveal the relationship between iron release and the key quality parameters. The RFe model could successfully combine with EPANET-MSX, a numerical simulator of water quality for WDSs to extend the iron release modeling from pipe level to network level. The new method is applicable to predicting iron release during source water switch, thus facilitating water utilities to take preventive actions to avoid “red water”.  相似文献   

5.
An instrument to detect atmospheric HO2 radicals using fluorescence assay by gas expansion (FAGE) technique has been developed. HO2 is measured by reaction with NO to form OH and subsequent detection of OH by laser-induced fluorescence at low pressure. The system performance has been improved by optimizing the expansion distance and pressure, the influence factors of HO2 conversion efficiency are also studied. The interferences of RO2 radicals were investigated by determining the conversion efficiency of RO2 to OH during the measurement of HO2. The dependence of the conversion of HO2 on NO concentration was investigated, and low HO2 conversion efficiency was selected to realize the ambient HO2 measurement, where the conversion efficiency of RO2 derived by propane, ethene, isoprene and methanol to OH has been reduced to less than 6% in the atmosphere. Furthermore, no significant interferences from PM2.5 and NO were found in the ambient HO2 measurement. The detection limits for HO2 (S/N = 2) are estimated to 4.8 × 105 cm?3 and 1.1 × 106 cm?3 (ρHO2= 20%) under night and noon conditions, with 60 sec signal integration time. The instrument was successfully deployed during STORM-2018 field campaign at Shenzhen graduate school of Peking University. The concentration of atmospheric HOx radical and the good correlation of OH with j(O1D) was obtained here. The diurnal variation of HOx concentration shows that the OH maximum concentration of those days is about 5.3 × 106 cm?3 appearing around 12:00, while the HO2 maximum concentration is about 4.2 × 108 cm?3 appearing around 13:30.  相似文献   

6.
To ensure the safety of drinking water, ozone (O3) has been extensively applied in drinking water treatment plants to further remove natural organic matter (NOM). However, the surface water and groundwater near the coastal areas often contain high concentrations of bromide ion (Br?). Considering the risk of bromate (BrO3?) formation in ozonation of the sand-filtered water, the inhibitory efficiencies of hydrogen peroxide (H2O2) and ammonia (NH3) on BrO3? formation during ozonation process were compared. The addition of H2O2 effectively inhibited BrO3? formation at an initial Br? concentration amended to 350 µg/L. The inhibition efficiencies reached 59.6 and 100% when the mass ratio of H2O2/O3 was 0.25 and > 0.5, respectively. The UV254 and total organic carbon (TOC) also decreased after adding H2O2, while the formation potential of trihalomethanes (THMsFP) increased especially in subsequent chlorination process at a low dose of H2O2. To control the formation of both BrO3? and THMs, a relatively large dose of O3 and a high ratio of H2O2/O3were generally needed. NH3 addition inhibited BrO3? formation when the background ammonia nitrogen (NH3N) concentration was low. There was no significant correlation between BrO3? inhibition efficiency and NH3 dose, and a small amount of NH3N (0.2 mg/L) could obviously inhibit BrO3? formation. The oxidation of NOM seemed unaffected by NH3 addition, and the structure of NOM reflected by synchronous fluorescence (SF) scanning remained almost unchanged before and after adding NH3. Considering the formation of BrO3? and THMs, the optimal dose of NH3 was suggested to be 0.5 mg/L.  相似文献   

7.
Intensive agriculture activities, industrialization and growing numbers of wastewater treatment plants along river banks collectively contribute to the elevated levels of neurotoxic pollutants in natural water reservoirs across Europe. We established an in vitro bioassay based upon neural stem cells isolated from the subventricular zone of the postnatal mouse to evaluate the neurotoxic potential of raw wastewater, treated sewage effluent, groundwater and drinking water. The toxic potential of water samples was evaluated employing viability, proliferation, differentiation and migration assays. We found that raw wastewater could reduce the viability and proliferation of neural stem cells, and decreased the neuronal and astrocyte differentiation, neuronal neurite growth, astrocyte growth and cell migration. Treated sewage water also showed inhibitory effects on cell proliferation and migration. Our results indicated that relatively high concentrations of nitrogenous substances, pesticides, mercuric compounds, bisphenol-A, and phthalates, along with some other pollutants in raw wastewater and treated sewage water, might be the reason for the neuroinhibitory effects of these water samples. Our model successfully predicted the neurotoxicity of water samples collected from different sources and also revealed that the incomplete removal of contaminants from wastewater can be problematic for the developing nervous system. The presented data also provides strong evidence that more effective treatments should be used to minimize the contamination of water before release into major water bodies which may be considered as water reservoirs for human usage in the future.  相似文献   

8.
Iodoacetic acid(IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague–Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage....  相似文献   

9.
Kongsfjorden is known for its characteristic multi-layer water mass formed by the convergence of freshwaters from nearby glaciers and rivers and saline water from the Atlantic and Arctic. The distribution of polycyclic aromatic hydrocarbons(PAHs) in the water column of Kongsfjorden was investigated and their potential sources were analyzed. The total concentrations of 16 PAHs in the surface seawater and river water were in the range of 33.4-79.8 ng/L(mean 48.5 ng/L) and 2.3-201.4 ng/L(mean 126.1...  相似文献   

10.
We present the structural, morphological and photocatalytic properties of stretchable composites made with carbon nanotubes (CNTs), silicon rubber and Ni@TiO2:W nanoparticles (TiWNi NPs) with average size of 37 ± 2 nm. Microscopy images showed that the TiWNi NPs decorated the surface of the CNT fibers, which are oriented in a preferential direction. TiWNi NPs presented a mixture of anatase/rutile phases with cubic structure. The performance of the TiWNi powders and stretchable composites was evaluated for the photocatalytic degradation of diclofenac (DCF) anti-inflammatory drug under ultraviolet-visible light. The results revealed that the maximum DCF degradation percentages were 34.6%, 91.9%, 97.1%, 98.5% and 100% for the CNT composite (stretched at 0%), TiWNi powders, CNT + TiWNi (stretched at 0%), CNT + TiWNi (stretched at 50%) and CNT + TiWNi (stretched at 100%), respectively. Thus, stretching the CNT + TiWNi composites was a good strategy to enhance the DCF degradation percentage from 97.1% to 100%, since stretching created additional defects (oxygen vacancies) that acted as electron sink, delaying the electron-hole recombination, and favors the DCF degradation. Raman/absorbance measurements confirmed the presence of such defects. Moreover, the reactive oxygen species (ROS) were determined by the scavenger's experiments and found that the main ROS were the ·OH and O2 radicals, which attacked the DCF molecules, causing their degradation. The results of this investigation confirmed that the stretchable CNT/TiWNi-based composites are a viable alternative to remove pharmaceutical contaminants from water and can be manually separated from the decontaminated water, which is unviable using photocatalytic powders.  相似文献   

11.
Reservoirs have been served as the major source of drinking water for dozens of years. The water quality safety of large and medium reservoirs increasingly becomes the focus of public concern. Field test has proved that water-lifting and aeration system (WLAS) is a piece of effective equipment for in situ control and improvement of water quality. However, its intrinsic bioremediation mechanism, especially for nitrogen removal, still lacks in-depth investigation. Hence, the dynamic changes in water quality parameters, carbon source metabolism, species compositions and co-occurrence patterns of microbial communities were systematically studied in Jinpen Reservoir within a whole WLAS running cycle. The WLAS operation could efficiently reduce organic carbon (19.77%), nitrogen (21.55%) and phosphorus (65.60%), respectively. Biolog analysis revealed that the microbial metabolic capacities were enhanced via WLAS operation, especially in bottom water. High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water. The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas. Furthermore, network analysis revealed that microorganisms interacted more closely through WLAS operation. Oxidation-reduction potential (ORP) and total nitrogen (TN) were regarded as the two main physicochemical parameters influencing microbial community structures, as confirmed by redundancy analysis (RDA) and Mantel test. Overall, the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water.  相似文献   

12.
Examining the contribution of fossil fuel CO2to the total CO2changes in the atmosphere is of primary concern due to its alarming levels of fossil fuel emissions over the globe,specifi cally developing countries.Atmospheric radiocarbon represents an important observationa constraint and utilized to trace fossil fuel derived CO2(CO2ff) in the atmosphere.For the firs time,we have presented a detailed analysis on the spatial distribution of fossil fuel der...  相似文献   

13.
Herein,a one-step co-pyrolysis protocol was adopted for the first time to prepare a novel pyrogenic carbon-Cu0/Fe3O4 heteroatoms (FCBC) in CO2 ambiance to discern the roles of each component in PDS activation.During co-pyrolysis,CO2 catalyzed formation of reducing gases by biomass which facilitated reductive transformation of Fe3+ and Cu2+ to Cu0 and Fe3O4,respectively.According to the a...  相似文献   

14.
UV/chlorine process, as an emerging advanced oxidation process (AOP), was effective for removing micro-pollutants via various reactive radicals, but it also led to the changes of natural organic matter (NOM) and formation of disinfection byproducts (DBPs). By using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), the transformation of Suwannee River NOM (SRNOM) and the formation of chlorinated DBPs (Cl-DBPs) in the UV/chlorine AOP and subsequent post-chlorination were tracked and compared with dark chlorination. In comparison to dark chlorination, the involvement of ClO?, Cl?, and HO? in the UV/chlorine AOP promoted the transformation of NOM by removing the compounds owning higher aromaticity (AImod) value and DBE (double-bond equivalence)/C ratio and causing the decrease in the proportion of aromatic compounds. Meanwhile, more compounds which contained only C, H, O, N atoms (CHON) were observed after the UV/chlorine AOP compared with dark chlorination via photolysis of organic chloramines or radical reactions. A total of 833 compounds contained C, H, O, Cl atoms (CHOCl) were observed after the UV/chlorine AOP, higher than 789 CHOCl compounds in dark chlorination, and one-chlorine-containing components were the dominant species. The different products from chlorine substitution reactions (SR) and addition reactions (AR) suggested that SR often occurred in the precursors owning higher H/C ratio and AR often occurred in the precursors owning higher aromaticity. Post-chlorination further caused the cleavages of NOM structures into small molecular weight compounds, removed CHON compounds and enhanced the formation of Cl-DBPs. The results provide information about NOM transformation and Cl-DBPs formation at molecular levels in the UV/chlorine AOP.  相似文献   

15.
Fluence rate (FR) distribution (optical field) is of great significance in the optimal design of ultraviolet (UV) reactors for disinfection or oxidation processes in water treatment. Since the 1970s, various simulation models have been developed, which can be combined with computational fluidic dynamic software to calculate the fluence delivered in a UV reactor. These models strive for experimental validation and further improvement, which is a major challenge for UV technology in water treatment. Herein, a review of the simulation models of the FR distribution in a UV reactor and the applications of the current main experimental measurement approaches including conventional flat-type UV detector, spherical actinometer, and micro-fluorescent silica detector (MFSD), is presented. Moreover, FR distributions in a UV reactor are compared between various simulation models and MFSD measurements. In addition, the main influential factors on the FR distribution, including inner-wall reflection, refraction and shadowing effects of adjacent lamps, and turbidity effect are discussed, which is helpful for improving the accuracy of the simulation models and avoiding dark regions in the reactor design. This paper provides an overview on the simulation models and measurement approaches for the FR distribution, which is helpful for the model selection in fluence calculations and gives high confidence on the optimal design of UV reactors in regard to present methods.  相似文献   

16.
Within the drinking water distribution system (DWDS) using chloramine as disinfectant,nitrification caused by nitrifying bacteria is increasingly becoming a concern as it poses a great challenge for maintaining water quality.To investigate efficient control strategies,operational conditions including hydraulic regimes and disinfectant scenarios were controlled within a flow cell experimental facility.Two test phases were conducted to investigate the effects on the extent of nitrification of thre...  相似文献   

17.
Cyanide(CN-) is extensively used in the process of plating devices and for surface treatment in the electroplating industry and is extremely hazardous to humans and the environment. Peroxymonosulfate(PMS)- based advanced oxidation processes(AOPs) hold considerable promise for CN- removal. However, the activity of sulfate radical and hydroxyl radical generated in the PMS activation process is low in the base condition, leading to a drop in its efficiency in CN- re...  相似文献   

18.
The role of PM2.5 (particles with aerodynamic diameters ≤ 2.5 µm) deposition in air quality changes over China remains unclear. By using the three-year (2013, 2015, and 2017) simulation results of the WRF/CUACE v1.0 model from a previous work (Zhang et al., 2021), a non-linear relationship between the deposition of PM2.5 and anthropogenic emissions over central-eastern China in cold seasons as well as in different life stages of haze events was unraveled. PM2.5 deposition is spatially distributed differently from PM2.5 concentrations and anthropogenic emissions over China. The North China Plain (NCP) is typically characterized by higher anthropogenic emissions compared to southern China, such as the middle-low reaches of Yangtze River (MLYR), which includes parts of the Yangtze River Delta and the Midwest. However, PM2.5 deposition in the NCP is significantly lower than that in the MLYR region, suggesting that in addition to meteorology and emissions, lower deposition is another important factor in the increase in haze levels. Regional transport of pollution in central-eastern China acts as a moderator of pollution levels in different regions, for example by bringing pollution from the NCP to the MLYR region in cold seasons. It was found that in typical haze events the deposition flux of PM2.5 during the removal stages is substantially higher than that in accumulation stages, with most of the PM2.5 being transported southward and deposited to the MLYR and Sichuan Basin region, corresponding to a latitude range of about 24°N-31°N.  相似文献   

19.
Stringent quarantine measures during the Coronavirus Disease 2019 (COVID-19) lockdown period (January 23, 2020 to March 15, 2020) have resulted in a distinct decrease in anthropogenic source emissions in North China Plain compared to the paralleled period of 2019. Particularly, 22.7% decrease in NO2 and 3.0% increase of O3 was observed in Tianjin, nonlinear relationship between O3 generation and NO2 implied that synergetic control of NOx and VOCs is needed. Deteriorating meteorological condition during the COVID-19 lockdown obscured the actual PM2.5 reduction. Fireworks transport in 2020 Spring Festival (SF) triggered regional haze pollution. PM2.5 during the COVID-19 lockdown only reduced by 5.6% in Tianjin. Here we used the dispersion coefficient to normalize the measured PM2.5 (DN-PM2.5), aiming to eliminate the adverse meteorological impact and roughly estimate the actual PM2.5 reduction, which reduced by 17.7% during the COVID-19 lockdown. In terms of PM2.5 chemical composition, significant NO3? increase was observed during the COVID-19 lockdown. However, as a tracer of atmospheric oxidation capacity, odd oxygen (Ox = NO2 + O3) was observed to reduce during the COVID-19 lockdown, whereas relative humidity (RH), specific humidity and aerosol liquid water content (ALWC) were observed with noticeable enhancement. Nitrogen oxidation rate (NOR) was observed to increase at higher specific humidity and ALWC, especially in the haze episode occurred during 2020SF, high air humidity and obvious nitrate generation was observed. Anomalously enhanced air humidity may response for the nitrate increase during the COVID-19 lockdown period.  相似文献   

20.
Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe3O4 in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O3-biological activated carbon filtration-UV-Cl2 treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号