首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Over the last years, investigations on the increase of platinum (Pt), palladium (Pd), and rhodium (Rh) levels in urban environments of big cities all over the world - especially to catalytic converters emissions - have been grown up enormously. S?o Paulo City is the 6th largest megacity in the world having about 20 million inhabitants and an ever increasing seven million motor vehicle fleet. In spite of this, there has never been an investigation regarding Pt, Pd, and Rh levels in the city. In the present study, Pt, Pd, and Rh concentrations were determined in soils adjacent to seven main high-density traffic avenues in the metropolitan region of S?o Paulo City. Inductively coupled plasma mass spectrometry was employed - after ultrasound-assisted aqua regia leaching - as analytical technigue. The results showed concentration levels up to 378?ng?g?1 for Pd, 208?ng?g?1 for Pt, and 0.2 to 45?ng?g?1 for Rh. These levels are much higher than those considered for the geochemical background of soils, indicating a catalytic converter source. Due to the different Pt/Pd/Rh ratio in Brazilian automobile catalytic converters, lower levels of Pt/Pd ratios compared with other similar studies were observed. The obtained results are the first data for monitoring Pt, Pd, and Rh pollution in S?o Paulo City soils.  相似文献   

2.
The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987–2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R2?=?0.94) than fall and spring (R2?=?0.58) seasons. Before 2000, ~?50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.  相似文献   

3.
Analysis of summer and winter vegetable samples during 2002–2003 for pesticidal contamination was carried out on Gas Chromatograph-Electron Capture Detector with capillary columns. The contamination levels of winter vegetables (average concentration of 4.57, 6.80 and 5.47 ppb respectively for Lindane, Endosulphan and DDT) were found to be slightly higher than the summer vegetables (average concentration of 4.47, 3.14 and 2.82 ppb respectively for Lindane, Endosulphan and DDT). The concentration of these organochlorine pesticides in summer and winter vegetables were well below the established tolerances but continuous consumption of such vegetables even with moderate contamination level can accumulate in the receptor's body and may lead to chronic effects that could be fatal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号