首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To stem rising remediation costs for soils contaminated with hazardous metals, increased emphasis is being placed on the development of in-situ and ex-situ treatment technologies. Often, a lack of basic information on the chemical and physical characteristics of the soil and contaminants hampers treatability studies used to design these technologies. This article proposes and demonstrates a characterization program to meet these information needs, employing standard analytical techniques coupled with advanced spectroscopy and microscopy techniques. To support treatments involving physical separation strategies, the program uses standard analytical techniques to characterize the soil and the association of contaminants with different soil fractions (e.g., size and density fractions). Where chemical treatments are required, spectroscopy and microscopy methods are employed to yield quantitative information on the oxidation state and speciation of the contaminant. Examples demonstrate the use of measured soil and contaminant characteristics in the screening of alternative treatment technologies and in the selection of soils for use in treatability studies. Also demonstrated is the use of these characterization tools in the design and optimization of treatment strategies and in support of risk assessment determinations.  相似文献   

2.
Forage crop species representing two biologically distinct families (legumes and grasses) were evaluated on soil spiked with 100 mg/kg of pyrene to determine the potential effectiveness of the rhizospheres of these plants for phytoremediation. In this experiment, pyrene dissipation could not be attributed to the presence of plants. Pyrene dissipation was also not related to rhizosphere biological activity, such as microbial counts and enzyme activity. Planting with reed canarygrass and switchgrass significantly increased the microbial counts in soil; however, the differences in the microbial counts were not correlated to the levels of pyrene dissipation. Reed canarygrass rhizosphere had significantly higher dehydrogenase activity compared to the switchgrass rhizosphere, but this difference in soil dehydrogenase activity was not related to pyrene dissipation. In general, the use of plants was not effective in causing pyrene transformation; however, the presence of vegetation on polycyclic aromatic hydrocarbon–contaminated soils could play a significant role in limiting the spread of contaminants (erosion, leaching) and enhancing ecosystem restoration. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
In a pilot project performed at a fertilizer manufacturing facility, a one‐step chemical oxidation technique successfully treated urea‐ and ammonium‐contaminated groundwater. The oxidation reaction occurred in an 1,100‐gallon batch reactor. The contaminated inflow was buffered by the metered addition of sodium bicarbonate solution and subsequently treated with sodium hypochlorite in an 8:1 weight ratio of Cl2:N. In an instantaneous reaction, the urea and ammo‐nium‐N were completely oxidized to nitrogen gas that was vented to the atmosphere during mixing. The pH of the reactor discharge was ?6.5. Sodium sulfite was used to reduce residual hypochlorite in the reactor effluent to chloride to provide process water with characteristics suitable for discharge. Oxidation rates were similar with different strengths of hypochlorite; however, a 5 to 6 percent sodium hypochlorite (as Cl2) solution was the most stable. © 2005 Wiley Periodicals, Inc.  相似文献   

4.
Bench‐scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites included in the National Priority List. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlorophenol (PCP), dioxins, and heavy metals. The effectiveness of the solvent extraction process was assessed using liquefied propane or dimethyl ether as solvents over a range of operating conditions. These studies have demonstrated that a two‐stage solvent extraction process using dimethyl ether as a solvent at a ratio of 1.61 per kg of soil could decrease dioxin levels in the soil by 93.0 to 98.9 percent, and PCP levels by 95.1 percent. Reduction percentages for benzo(a)pyrene (BaP) potency estimate and total detected PAHs were 82.4 and 98.6 percent, respectively. Metals concentrations were not reduced by the solvent extraction treatment. These removal levels could be significantly improved using a multistage extraction system. Commercial scale solvent extraction using liquefied gases costs about $220 per ton of contaminated soil. However, field application of this technology at the United Creosote site, Conroe, Texas, failed to perform to the level observed at bench scale due to the excessive foaming and air emission problem. Soil washing using surfactant solution and wet screening treatability studies were also performed on the soil samples in order to assess remediation strategies for sites. Although aqueous phase solubility of contaminants seemed to be the most important factor affecting removal of contaminants from soil, surfactant solutions (3 percent by weight) having nonionic surfactants with hydrophile‐lipophile balance (HLB) of about 14 (Makon‐12 and Igepal CA 720) reduced the PAH levels by an average of 71 percent, compared to no measurable change when pure deionized water was used. Large fractioza of clay and silt (<0.06mm), high le!ezielsof orgaizic contami‐ nants and hzimic acid can makesoil washing less applicable.  相似文献   

5.
1,4‐Dioxane is a synthetic industrial chemical frequently found at contaminated sites where 1,1,1‐trichloroethane was used for degreasing. It is a probable human carcinogen and has been found in groundwater at sites throughout the United States. The physical and chemical properties and behavior of 1,4‐dioxane create challenges for its characterization and treatment. It is highly mobile and has not been shown to readily biodegrade in the environment. In December 2006, the U.S. Environmental Protection Agency's Office of Superfund Remediation and Technology Innovation (OSRTI) prepared a report titled “Treatment Technologies for 1,4‐Dioxane: Fundamentals and Field Applications.” The report provides information about the chemistry of dioxane, cleanup goals, analytical methods, available treatment technologies, and site‐specific treatment performance data. The information may be useful to project managers, technology providers, consulting engineers, and members of academia faced with addressing dioxane at cleanup sites or in drinking water supplies. This article provides a synopsis of the US EPA report, which is available at http://cluin.org/542R06009 . © 2007 Wiley Periodicals, Inc.  相似文献   

6.
This study demonstrates a remedial approach for completing the remediation of an aquifer contaminated with 1,1,2‐trichlorotrifluoroethane (Freon‐113) and 1,1,1‐trichloroethane (TCA). In 1987, approximately 13,000 pounds of Freon‐113 were spilled from a tank at an industrial facility located in the state of New York. The groundwater remediation program consisted of an extraction system coupled with airstripping followed by natural attenuation of residual contaminants. In the first phase, five recovery wells and an airstripping tower were operational from April 1993 to August 1999. During this time period over 10,000 pounds of CFC‐13 and 200 pounds of TCA were removed from the groundwater and the contaminant concentrations decreased by several orders of magnitude. However, the efficiency of the remediation system to recover residual Freon and/or TCA reduced significantly. This was evidenced by: (1) low levels (< 10 ppb) of Freon and TCA captured in the extraction wells and (2) a slight increase of Freon and/or TCA in off‐site monitoring wells. A detailed study was conducted to evaluate the alternative for the second‐phase remediation. Results of a two‐year groundwater monitoring program indicated the contaminant plume to be stable with no significant increase or decrease in contaminant concentrations. Monitored geochemical parameters suggest that biodegradation does not influence the fate and transport of these contaminants, but other mechanisms of natural attenuation (primarily sorption and dilution) appear to control the fate and transport of these contaminants. The contaminants appear to be bound to the soil matrix (silty and clay units) with limited desorption as indicated by the solid phase analyses of contaminant concentrations. Results of fate and transport modeling indicated that contaminant concentrations would not exceed the action levels in the wells that showed a slight increase in contaminant concentrations and in the downgradient wells (sentinel) during the modeled timeframe of 30 years. This feasibility study for natural attenuation led to the termination of the extraction system and a transaction of the property, resulting in a significant financial benefit for the original site owner. © 2003 Wiley Periodicals, Inc.  相似文献   

7.
CDISCO, a Microsoft Excel spreadsheet–based model, can be used to assist with the design of in situ chemical oxidation (ISCO) systems using permanganate (MnO4?). The model inputs are the aquifer characteristics (porosity, hydraulic conductivity, effective aquifer thickness, natural oxidant demand, kinetic parameters, contaminant concentrations, etc.), injection conditions (permanganate injection concentration, flow rate, and duration), and unit costs for reagent, drilling, and labor. MnO4? transport in the aquifer is simulated and used to estimate the effective radius of influence (ROI) and required injection point spacing. CDISCO then provides a preliminary cost estimate for the selected design conditions. The user can perform multiple runs of CDISCO to optimize the cost of the ISCO design. Comparisons with analytical and numerical models of nonreactive and reactive transport demonstrate that CDISCO accurately simulates MnO4? transport and consumption. Comparison of CDISCO results with the three‐dimensional heterogeneous simulations show that aquifer volume contact efficiency and contaminant mass treatment efficiency are closely correlated with the ROI overlap factor. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Treatment of perchlorate‐contaminated groundwater using highly selective, regenerable ion‐exchange technology has been recently demonstrated at Edwards Air Force Base, California. At an influent concentration of about 450 μg/l ClO4?, the bifunctional anion‐exchange resin bed treated approximately 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO4? occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO4?. The spent resin bed was successfully regenerated using the FeCl3?HCl regeneration technique recently developed at the Oak Ridge National Laboratory, and nearly 100 percent of sorbed ClO4? was displaced or recovered after elution with as little as about two bed volumes of the regenerant solution. In addition, a new methodology was developed to completely destroy ClO4? in the FeCl3?HCl solution so that the disposal of perchlorate‐containing hazardous wastes could be eliminated. It is therefore anticipated that these treatment and regeneration technologies may offer an efficient and cost‐effective means to remove ClO4? from contaminated groundwater with significantly reduced generation of waste requiring disposal. © 2002 Wiley Periodicals, Inc.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) are microscopic fungi that occur naturally in soil and form a symbiosis with plant roots. By colonizing the roots, the fungus increases plant growth by making soil essential elements like zinc and phosphorus more accessible. AMF can play a role in the phytoremediation of heavy metal–contaminated soil (mycorrhizoremediation). Two research experiments were conducted to evaluate the impact of AMF on the extraction of different heavy metals (arsenic, cadmium, lead, selenium, and zinc) in contaminated soil. A grass mixture composed of Festuca rubra, Festuca eliator, Agropyron repens, and Trifolium repens was used in the experiments, and four different types of AMF were investigated: Glomus intraradices, Glomus mosseae, Glomus etunicatum, and Gigaspora gigantea. The results of the study showed that heavy metal extraction by Glomus intraradices colonized plants was the highest of all four AMF tested and was generally higher than nonmycorrhizal plants, depending on the heavy metal concentration in soil and whether it interacted with other metals in soil. However, metal extraction by AMF colonized grasses reached a plateau after an approximately two‐month period showing no further phytoaccumulation. © 2006 Wiley Periodicals, Inc.  相似文献   

10.
This article presents the results of a pilot test that was conducted to determine the effectiveness of using steam‐enhanced dual‐phase extraction (DPE) at a former industrial site in New York. The pilot test proved that steam‐enhanced DPE was very effective at removing significant contaminant mass from the subsurface in a relatively short time period. Concentrations of volatile organic compounds and semivolatile organic compounds in the vapor stream and groundwater were successfully reduced, in some cases by orders of magnitude. Based on the results of the steam‐enhanced DPE pilot test, the final remedy for the site includes implementing this technology at selected areas as an alternative to DPE alone or other remedial alternatives, such as excavation or groundwater pump and treat. © 2003 Wiley Periodicals, Inc.  相似文献   

11.
While the techniques and technologies associated with contaminated sediment remediation are relatively mature, there are several issues associated with these practices that make them unattractive. The inability of currently used mechanical mixing implements to place amendments in aqueous environments and their intrusive behavior toward benthic communities are just two examples of a necessity for an improved delivery method. Waterjets may be a viable option for placement of particulate remediation amendments, such as activated carbon and granular iron, at depth. A custom waterjet nozzle and injection system has been fabricated by the authors to examine this delivery concept. The developed injection system's performance was tested by characterizing the waterjet‐delivered amendment (activated carbon and granular iron) distributions in a surrogate sediment. The delivered amendment distributions followed similar patterns for a range of injection times and a variety of amendments. The injection depths, however, were dependent upon the type of amendment being injected. These findings have led to a better understanding of what occurs during an amendment injection, which can be used for a more controlled placement of remediation amendments using this technique in the future. The laboratory results indicate that the subject waterjet system may have the potential for field‐scale applications, especially for granular iron delivery, as the authors were able to place between 60 and 70 wt percent into a surrogate sediment bed along the path of injection. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
A considerable number of contaminated mining sites in Europe and other parts of the world pose environmental hazards. Given the multifaceted benefits of phytoremediation, screening of plant communities grown in contaminated areas is being conducted to identify hyperaccumulating plant species. A few arsenic (As) hyperaccumulating plants are found in tropical countries; however, generally, they are not grown in contaminated mining sites of cold and temperate countries (Europe and other parts of the world). The transgenic plants identified to date are not believed to be suitable for commercial use of phytoremediation. A few tolerant plant species in mining sites that are found to have elevated As levels primarily concentrate As in their roots. The remediation potential of many of these tolerant plants is limited because of their slow growth and low biomass. Therefore, phytostabilization of contaminated mining sites using tolerant plant species with high biomass and a more extensive root system is the only solution to date in Europe and some other parts of the world. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
The quantification of greenhouse gas (GHG) emissions can be a powerful sustainability measurement indicator for assessing environmental impacts of various operations, which can include remediation of chemically impacted media or construction projects. A carbon footprint calculator was developed and is presented in this article as one tool for applying sustainable practices to environmental remediation—specifically to assess the GHG footprint for remediation projects. The calculator is constructed from a compilation of published metrics and “standards.” © 2008 Wiley Periodicals, Inc.  相似文献   

14.
Methyl tertiary‐butyl ether (MTBE) is commonly used as a fuel additive because of its many favorable properties that allow it to improve fuel combustion and reduce resulting concentrations of carbon monoxide and unburnt hydrocarbons. Unfortunately, increased production and use have led to its introduction into the environment. Of particular concern is its introduction into drinking water supplies. Accordingly, research studies have been initiated to investigate the treatment of MTBE‐contaminated soil and groundwater. The summer 2000 issue of Remediation reported the results of an initial study conducted by the authors to evaluate the treatment of MTBE using Fenton's reagent. In this follow‐up study, experiments were conducted to further demonstrate the effectiveness of using Fenton's reagent (H2O2:Fe+2) to treat MTBE‐contaminated groundwater. The concentration of MTBE was reduced from an initial concentration of 1,300 μg/l (14.77 μ moles) to the regulatory level of 20 μg/l (0.23 μ moles) at a H2O2:Fe+2 molar ratio of 1:1, with ten minutes of contact time and an optimum pH of 5. The by‐products, acetone and tertiary butyl alcohol, which are always present in MTBE in trace amounts, were not removed even after 60 minutes of reaction time. © 2002 Wiley Periodicals, Inc. *  相似文献   

15.
A comparison of refuse attenuation in laboratory and field scale lysimeters   总被引:20,自引:0,他引:20  
For this study, small and middle scale laboratory lysimeters, and a large scale field lysimeter in situ in Shanghai Refuse Landfill, with refuse weights of 187,600 and 10,800,000 kg, respectively, were created. These lysimeters are compared in terms of leachate quality (pH, concentrations of COD, BOD and NH3-N), refuse composition (biodegradable matter and volatile solid) and surface settlement for a monitoring period of 0-300 days. The objectives of this study were to explore both the similarities and disparities between laboratory and field scale lysimeters, and to compare degradation behaviors of refuse at the intensive reaction phase in the different scale lysimeters. Quantitative relationships of leachate quality and refuse composition with placement time show that degradation behaviors of refuse seem to depend heavily on the scales of the lysimeters and the parameters of concern, especially in the starting period of 0-6 months. However, some similarities exist between laboratory and field lysimeters after 4-6 months of placement because COD and BOD concentrations in leachate in the field lysimeter decrease regularly in a parallel pattern with those in the laboratory lysimeters. NH3-N, volatile solid (VS) and biodegradable matter (BDM) also gradually decrease in parallel in this intensive reaction phase for all scale lysimeters as refuse ages. Though the concrete data are different among the different scale lysimeters, it may be considered that laboratory lysimeters with sufficient scale are basically applicable for a rough simulation of a real landfill, especially for illustrating the degradation pattern and mechanism. Settlement of refuse surface is roughly proportional to the initial refuse height.  相似文献   

16.
This article demonstrates the applicability of in situ flushing for the remediation of soil contaminated with petroleum hydrocarbons at a Mexican refinery. The initial average total petroleum hydrocarbon (TPH) concentration for the demonstration field test was 55,156 g/kg. After six weeks of in situ flushing with alternate periods of water and water/surfactant, an average concentration of 1,407 mg/kg was reached, achieving a total removal efficiency of 98 percent. At the end of the process, no hydrocarbons such as diesel; gasoline; benzene, toluene, ethyl benzene, and xylene (BTEX); or petroleum aromatic hydrocarbons (PAHs) were found. Iron washing achieved a removal efficiency of 70 percent, and for vanadium, the removal efficiency was 94.4 percent. The volume of soil treated was 41.6 m3 (38 m2), equivalent to 69.5 tons of soil. A rough calculation of the process costs estimated a total cost of $104.20/m3 ($114.00/m2). Our research indicates that there are a few studies demonstrating in situ flushing experiences under field conditions where both organic (TPH, diesel, gasoline, PAHs, BTEX) and metal (iron and vanadium) removals are reported. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.  相似文献   

18.
An experiment was performed to examine the phytoremediation potential of Rhodes grass (Chloris gayana Kunth cv. ‘Pioneer’). The study sought to determine substrate tolerance, biomass production, and plant uptake of antimony (Sb), arsenic (As), cadmium (Cd), lead (Pb), silver (Ag), and zinc (Zn). The plants were grown on weight percent mixtures (5 percent, 15 percent, 25 percent, 35 percent, 50 percent) of a vertisol soil and base‐metal mine tailings (7–2,040 μg/g As, ≥ 30 μg/g Cd, 30–12,000 μg/g Pb, and 72–4,120 μg/g Zn). The 5 percent and 15 percent amendment of mine tailings increased the biomass production of Rhodes grass (from 0.1 g/plant to ≈ 3.5 g/plant) without appreciably elevating plant concentrations of the elements. Plant growth decreased by greater than 50 percent for the substrate containing greater than 25 percent tailings (3,023 μg/g Pb and 1,084 μg/g Zn). Reduced biomass production coincided with maximal Zn uptake by Rhodes grass (249.8 μg/g), indicating tailings induced phytotoxicity. The total concentrations of metals and metalloids tolerated by Rhodes grass in the plant‐growth medium indicated hypertolerance to elevated As, Pb, and Zn concentrations. Partial extraction of the plant‐growth medium determined that plant‐available Pb was ten times higher than Ag, As, Cd, and Zn availability. However, Rhodes grass accumulated low levels of Pb, in addition to As and Cd, over the experimental range, indicating low fodder toxicity risk to browsing livestock. This study concludes that if there are no invasive species issues associated with conservation land uses, Rhodes grass is well suited to metalliferous mined land revegetation and would therefore be highly effective for such programs in subtropical and tropical Australia. © 2005 Wiley Periodicals, Inc.  相似文献   

19.
1,4‐Dioxane (14DX) is classified as a probable human carcinogen by the US Environmental Protection Agency (EPA), and it has toxic effects on the kidney and liver. EPA's Health Advisory Level (HAL) for 14DX is 0.35 micrograms per liter (μg/L). Accordingly, several states have lowered their drinking water advisory levels and site cleanup levels. The widespread occurrence of 14DX in contaminated groundwater has contributed to a growing demand for remediation services. Treating 14DX is a challenge due to its very low Henry's law constant, low sorption potential, and strong ether linkages. The primary solution for 14DX remediation has been various forms of advanced oxidation processes (AOP), namely pump and treat followed by ex situ treatment with catalyzed ultraviolet light oxidation or ozone‐peroxidation. Many of the available advanced oxidation systems are complex, requiring careful monitoring and maintenance to adjust for variable source water and operating conditions. Synthetic media is a relatively new 14DX treatment technology that overcomes many of the operating challenges faced by existing technologies. AMBERSORB? 560 (AMBERSORB) has recently demonstrated the effective removal of 14DX over a wide range of concentrations and operating conditions, including those created by in situ thermal remediation. Consistent and reliable treatment down to sub‐0.3 μg/L levels differentiates synthetic media technology from other 14DX treatment technologies. AMBERSORB provides a solution to the problem of “stranded capital” by offering a 14DX treatment system capable of meeting regulatory standards today and in the foreseeable future. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
This study investigates the potential for perchlorate biodegradation in the sediments of the Las Vegas Wash area in Henderson, Nevada. The continuous transport of perchlorate from a contaminated seepage to the Las Vegas Wash, Lake Mead, and the Colorado River has resulted in considerable deposition of perchlorate along the sediments of the Las Vegas Wash. The contaminated sediments act as a distributed source of perchlorate, making efforts to stop the flow of perchlorate to the Colorado River very challenging. In this study, perchlorate‐ reducing bacteria were enumerated and microcosm tests were performed to investigate the role of indigenous microorganisms and the limitations to natural perchlorate biodegradation in the contaminated sediments. The results of microcosm tests revealed that, despite the high number of perchloratereducing bacteria present, natural perchlorate in the area appears to be limited by (1) high salinity levels, the presence of nitrate, and the low perchlorate concentrations present in the sediments and (2) an insufficient carbon source. However, the potential for in situ bioremediation of the sediments along the Wash area is considered to be high due to the presence of significant numbers of perchlorate‐ reducing bacteria and to the ease in which an additional carbon source could be provided to sustain nitrate and perchlorate biodegradation. The economics of this process are expected to be very favorable; however, detailed cost estimates, pilot‐scale testing, and permit applications are required before this concept can be applied. © 2005 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号