首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In 1979, the Pinelands Commission was established as a regional land-use planning and regulatory agency charged with the implementation of a Comprehensive Management Plan (CMP) for the Pinelands National Reserve (New Jersey, USA). The CMP was created to balance land preservation and development interests in the Reserve. Because water-quality degradation from developed and agricultural landscapes is associated with changes in the composition of biological communities, monitoring landscape changes provides one of the most direct measures of the impact of land-use policies on the Pinelands ecosystem. In this study, we prepared detailed, land-cover maps within randomly selected aerial-photograph plots for a major watershed in the Reserve. We used these land-cover maps to quantify changes in landscape composition and structure (i.e., patch size, patch area, and number of patches) and characterize land-cover transitions in the basin between 1979 and 1991. Because the study period represented the first 12 years of the regional-planning effort in the Reserve, we evaluated the relationship between land-cover transitions and Commission management-area designations which permit different land-use intensities. Although the landscape composition was similar in 1979 and 1991, we found an increase in the total area and number of developed-land, managed-grassland, and barren-land patches. An increase in the number of patches and a decrease in the total area and median and third-quartile patch sizes for forest land and for all patches regardless of cover type indicated that fragmentation of forest land and the landscape as a whole occurred during the study period. The major land-cover transitions that occurred during the period were the loss of forest land to development and associated cover types and the conversion of one agricultural type to another. Overall, land-cover transitions during the period were found to be consistent with the Commission management-area designations, which indicated that the regional-planning effort has been successful in directing human activities to appropriate areas of the basin.  相似文献   

2.
Regionalization, or the grouping of objects in space, is a useful tool for organizing, visualizing, and synthesizing the information contained in multivariate spatial data. Landscape pattern indices can be used to quantify the spatial pattern (composition and configuration) of land cover features. Observable patterns can be linked to underlying processes affecting the generation of landscape patterns (e.g., forest harvesting). The objective of this research is to develop an approach for investigating the spatial distribution of forest pattern across a study area where forest harvesting, other anthropogenic activities, and topography, are all influencing forest pattern. We generate spatial pattern regions (SPR) that describe forest pattern with a regionalization approach. Analysis is performed using a 2006 land cover dataset covering the Prince George and Quesnel Forest Districts, 5.5 million ha of primarily forested land base situated within the interior plateau of British Columbia, Canada. Multivariate cluster analysis (with the CLARA algorithm) is used to group landscape objects containing forest pattern information into SPR. Of the six generated SPR, the second cluster (SPR2) is the most prevalent covering 22% of the study area. On average, landscapes in SPR2 are comprised of 55.5% forest cover, and contain the highest number of patches, and forest/non-forest joins, indicating highly fragmented landscapes. Regionalization of landscape pattern metrics provides a useful approach for examining the spatial distribution of forest pattern. Where forest patterns are associated with positive or negative environmental conditions, SPR can be used to identify similar regions for conservation or management activities.  相似文献   

3.
We used remote sensing and GIS in conjunction with multivariate statistical methods to: (i) quantify landscape composition (land cover types) and configuration (patch density, diversity, fractal dimension, contagion) for five coastal watersheds of Kalloni gulf, Lesvos Island, Greece, in 1945, 1960, 1971, 1990 and 2002/2003, (ii) evaluate the relative importance of physical (slope, geologic substrate, stream order) and human (road network, population density) variables on landscape composition and configuration, and (iii) characterize processes that led to land cover changes through land cover transitions between these five successive periods in time. Distributions of land cover types did not differ among the five time periods at the five watersheds studied because the largest cumulative changes between 1945 and 2002/2003 did not take place at dominant land cover types. Landscape composition related primarily to the physical attributes of the landscape. Nevertheless, increase in population density and the road network were found to increase heterogeneity of the landscape mosaic (patchiness), complexity of patch shape (fractal dimension), and patch disaggregation (contagion). Increase in road network was also found to increase landscape diversity due to the creation of new patches. The main processes involved in land cover changes were plough-land abandonment and ecological succession. Landscape dynamics during the last 50 years corroborate the ecotouristic-agrotouristic model for regional development to reverse trends in agricultural land abandonment and human population decline and when combined with hypothetical regulatory approaches could predict how this landscape could develop in the future, thus, providing a valuable tool to regional planning.  相似文献   

4.
The aim of this work is the analysis of the dynamics in cultural landscapes, focused on the spatial distribution of changes in land cover and landscape patterns, and their possible linkages. These dynamics have been analyzed for the years 1957 and 2000 in a sector of the north of Galicia (NW Spain) characterized with diverse landscapes. Afforestation processes linked to agriculture abandonment and forestry specialization were the main processes observed in the study area, with the exception of the southern mountainous sector that was dominated by ploughing of scrubland for conversion into grassland, reflecting a specialization in livestock production. The structural changes that have taken place in most of the study area were related to the heterogeneity aspects, although the mountainous sectors were characterized by changes in heterogeneity and fragmentation. According to the tests performed, the comparison of the spatial distribution of both dynamics showed a certain statistical significance, reflecting the interrelationship between patterns and processes. This approach could be useful for the identification of areas with similar characteristics in terms of spatial dynamics so as to define more effective and targeted landscape planning and management strategies.  相似文献   

5.
In the tropics and sub-tropics, where high levels of biodiversity co-exist with some of the greatest levels of population density, achieving complete exclusion in protected area contexts has proved close to impossible. There is a clear need to recognize that parks are significantly impacted by human–environment interactions in the larger landscape within which they are embedded, and to move the frontier of research beyond the boundaries of protected areas in order to examine larger landscapes where multiple forms of ownership and access are embedded. This research evaluates forest change and fragmentation between 1990 and 2000, in a landscape surrounding the Mahananda Wildlife Sanctuary in the Indian state of West Bengal. This protected forest is bounded to the south by a less intensively protected area, the Baikunthapur Reserve Forest, and surrounded by a mosaic of unprotected, largely private land holdings. Results indicate differences in the extent and spatial pattern of forest cover change in these three zones, corresponding to different levels of government protection, access and monitoring. The two protected areas experience a trend toward forest regrowth, relating to the cessation of commercial logging by park management during this period. Yet, there is still substantial clearing toward peripheral areas that are well connected to illegal timber markets by transportation networks. The surrounding landscape, although experiencing some forest regrowth within less intensively cultivated tea plantations, is also becoming increasingly fragmented, with potentially critical impacts on the maintenance of effective wildlife corridors in this ecologically critical region.  相似文献   

6.
In biologically mega-diverse countries that are undergoing rapid human landscape transformation, it is important to understand and model the patterns of land cover change. This problem is particularly acute in Colombia, where lowland forests are being rapidly cleared for cropping and ranching. We apply a conceptual model with a nested set of a priori predictions to analyse the spatial and temporal patterns of land cover change for six 50-100 km(2) case study areas in lowland ecosystems of Colombia. Our analysis included soil fertility, a cost-distance function, and neighbourhood of forest and secondary vegetation cover as independent variables. Deforestation and forest regrowth are tested using logistic regression analysis and an information criterion approach to rank the models and predictor variables. The results show that: (a) overall the process of deforestation is better predicted by the full model containing all variables, while for regrowth the model containing only the auto-correlated neighbourhood terms is a better predictor; (b) overall consistent patterns emerge, although there are variations across regions and time; and (c) during the transformation process, both the order of importance and significance of the drivers change. Forest cover follows a consistent logistic decline pattern across regions, with introduced pastures being the major replacement land cover type. Forest stabilizes at 2-10% of the original cover, with an average patch size of 15.4 (+/-9.2)ha. We discuss the implications of the observed patterns and rates of land cover change for conservation planning in countries with high rates of deforestation.  相似文献   

7.
Landscape Trends in Mid-Atlantic and Southeastern United States Ecoregions   总被引:3,自引:0,他引:3  
Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km × 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/land cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.  相似文献   

8.
Forest loss and fragmentation are of major concern to the international community, in large part because they impact so many important environmental processes. The main objective of this study was to assess the differences in forest fragmentation patterns and drivers between China and the conterminous United States (USA). Using the latest 300-m resolution global land cover product, Globcover v2.2, a comparative analysis of forest fragmentation patterns and drivers was made. The fragmentation patterns were characterized by using a forest fragmentation model built on the sliding window analysis technique in association with landscape indices. Results showed that China’s forests were substantially more fragmented than those of the USA. This was evidenced by a large difference in the amount of interior forest area share, with China having 48% interior forest versus the 66% for the USA. China’s forest fragmentation was primarily attributed to anthropogenic disturbances, driven particularly by agricultural expansion from an increasing and large population, as well as poor forest management practices. In contrast, USA forests were principally fragmented by natural land cover types. However, USA urban sprawl contributed more to forest fragmentation than in China. This is closely tied to the USA’s economy, lifestyle and institutional processes. Fragmentation maps were generated from this study, which provide valuable insights and implications regarding habitat planning for rare and endangered species. Such maps enable development of strategic plans for sustainable forest management by identifying areas with high amounts of human-induced fragmentation, which improve risk assessments and enable better targeting for protection and remediation efforts. Because forest fragmentation is a long-term, complex process that is highly related to political, institutional, economic and philosophical arenas, both nations need to take effective and comprehensive measures to mitigate the negative effects of forest loss and fragmentation on the existing forest ecosystems.  相似文献   

9.
One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest is a crucial disturbance affecting planted pine area, as other forest types are converted to planted pine after harvest. Conversely, however, many harvested pine plantations revert to other forest types, mainly due to passive regeneration behavior on nonindustrial private timberlands. We model land use and land cover changes as a basis for projecting future changes in planted pine area, to aid policy analysts concerned with mitigation activities for global climate change. Projections are prepared in two stages. Projected land use changes include deforestation due to pressures to develop rural land as the human population expands, which is a larger area than that converted from other rural lands (e.g., agriculture) to forestry. In the second stage, transitions among forest types are projected on land allocated to forestry. We consider reforestation, influences of timber harvest, and natural succession and disturbance processes. Baseline projections indicate a net increase of about 5.6 million ha in planted pine area in the South over the next 50 years, with a notable increase in sequestered carbon. Additional opportunities to expand pine plantation area warrant study of landowner behavior to aid in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change and attain other goals.  相似文献   

10.
To facilitate forest planning and management on National Wildlife Refuges, we synthesized multiple data sources to describe land ownership patterns, land cover, landscape pattern, and changes in forest composition for four ecoregions and their associated refuges of the Upper Midwest. We related observed patterns to ecological processes important for forest conservation and restoration, with specific attention to refuge patterns of importance for forest landbirds of conservation priority. The large amount of public land within the ecoregions (31–80%) suggests that opportunities exist for coarse and meso-scale approaches to conserving and restoring ecological processes affecting the refuges, particularly historical fire regimes. Forests dominate both ecoregions and refuges, but refuge forest patches are generally larger and more aggregated than in associated ecoregions. Broadleaf taxa have increased in dominance in the ecoregions and displaced fire-dependent taxa such as pine (Pinus spp.) and other coniferous species; these changes in forest composition have likely also affected refuge forests. Despite compositional changes, larger forest patches on refuges suggests that they may provide better habitat for area-sensitive forest landbirds of mature, compositionally diverse forests than surrounding lands if management continues to promote increased patch size. We reason that although fine-scale research and monitoring for species of conservation priority is important, broad scale (ecoregional) assessments provide crucial context for effective forest and wildlife management in protected areas.  相似文献   

11.
本文以生态景观理论为基础,地理信息与遥感技术为支撑,对岷江流域三江交汇区三期遥感数据,1990年TM、2002年TM、2014年ETM+数据进行图像分类、景观指数提取、空间分析,同时采用面积转移矩阵统计各景观面积的转移情况,分析景观格局变化的影响因素,研究结果表明:(1)1990—2014年三江交汇区景观类型面积排序为:农田林地草地水域居民地裸地。优势景观为耕地,所占比例由72.83%下降到63.32%,面积减少了3480hm2。草地所占比例呈现波动变化,总体增加了2.81%。林地比例由15.98%上升到18.79%,增加了700hm2。居民地所占比例升高了4.1%;(2)1990年研究区内草地景观易受到外部干扰,其分布形状复杂。林地景观整体聚合度较高同时具有较低的异质性,分布通透性好、规模连续。农田分布较为分散且斑块较小。2002年农田斑块分布复杂化,同时具有聚集度高的特点。2014年研究区内农田优势地位下降。此时农田分布比较破碎并且呈现集中的态势。草地分布规模性较好、分布较为完整,但是内部存在一定的破碎性;(3)三江交汇区景观类型相互转化的主要原因:一是,退耕还林、还草政策实施,海拔超过500m的丘陵山地区域,建立生态保护区。二是,成绵乐铁路和高速路网的完善,使得三江交汇区的土地类型向建设用地转化加快,主要集中在乐山市中区和周围城镇。  相似文献   

12.
We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.  相似文献   

13.
The Chi-Chi earthquake (ML = 7.3) occurred in the central part of Taiwan on September 21, 1999. After the earthquake, typhoons Xangsane and Toraji produced heavy rainfall that fell across the eastern and central parts of Taiwan on November 2000 and July 2001. This study uses remote sensing data, landscape metrics, multivariate statistical analysis, and spatial autocorrelation to assess how earthquake and typhoons affect landscape patterns. It addresses variations of the Chenyulan watershed in Nantou County, near the earthquake’s epicenter and crossed by Typhoon Toraji. The subsequent disturbances have gradually changed landscape of the Chenyulan watershed. Disturbances of various types, sizes, and intensities, following various tracks, have various effects on the landscape patterns and variations of the Chenyulan watershed. The landscape metrics that are obtained by multivariate statistical analyses showed that the disturbances produced variously fragmented patches, interspersed with other patches and isolated from patches of the same type across the entire Chenyulan watershed. The disturbances also affected the isolation, size, and shape-complexity of patches at the landscape and class levels. The disturbances at the class level more strongly affected spatial variations in the landscape as well as patterns of grasslands and bare land, than variations in the watershed farmland and forest. Moreover, the earthquake with high magnitude was a starter to create these landscape variations in space in the Chenyulan watershed. The cumulative impacts of the disturbances on the watershed landscape pattern had existed, especially landslides and grassland in the study area, but were not always evident in space and time in landscape and other class levels.  相似文献   

14.
The impacts of land use and land cover (LULC) change in buffer zones surrounding protected ecological reserves have important implications for the management and conservation of these protected areas. This study examines the spatial and temporal patterns of LULC change along the boundary of Rio Abiseo National Park in the Northern Peruvian Andes. Landscape change within four ecological zones was evaluated based on trends expected to occur between 1987 and 2001. Landsat TM and ETM imagery were used to produce LULC classification maps for both years using a hybrid supervised/unsupervised approach. LULC changes were measured using landscape metrics and from-to change maps created by post-classification change detection. Contrary to expectations, tropical upper wet montane forest increased despite being threatened by human-induced fires and cattle grazing of the highland grasslands inside the park. Within the park’s buffer zone, tropical moist forest remnants were fragmented into more numerous and smaller patches between 1987 and 2001; this was in part due to conversion into agricultural land. The methods used in this study provide an effective way to monitor LULC change detection and support the management of protected areas and their surrounding environments.  相似文献   

15.
The conversion of landscapes by human activities results in widespread changes in landscape spatial structure. Regardless of the type of land conversion, there appears to be a limited number of common spatial configurations that result from such land transformation processes. Some of these configurations are considered optimal or more desirable than others. Based on pattern geometry, we define ten processes responsible for pattern change: aggregation, attrition, creation, deformation, dissection, enlargement, fragmentation, perforation, shift, and shrinkage. A novelty in this contribution is the inclusion of transformation processes causing expansion of the land cover of interest. Consequently, we propose a decision tree algorithm that enables detection of these processes, based on three parameters that have to be determined before and after the transformation of the landscape: area, perimeter length, and number of patches of the focal landscape class. As an example, the decision tree algorithm is applied to determine the transformation processes of three divergent land cover change scenarios: deciduous woodland degradation in Cadiz Township (Wisconsin, USA) 1831–1950, canopy gap formation in a terra firme rain forest at the Tiputini Biodiversity Station (Amazonian Ecuador) 1997–1998, and forest regrowth in Petersham Township (Massachusetts, USA) 1830–1985. The examples signal the importance of the temporal resolution of the data, since long-term pattern conversions can be subdivided in stadia in which particular pattern components are altered by specific transformation processes.  相似文献   

16.
Forest cover in the upper Wabash River basin in Indiana was fragmented due to agricultural conversion beginning more than 175 years ago. Currently, urban expansion is an important driver of land-use change in the basin. A land transformation model was applied to the basin to forecast land use from 2000 to 2020. We assessed the effect of this projected land-use change scenario on five forest rodent species at three scales: using occupancy models at the patch level, proportional occupancy models at the landscape level, and ecologically scaled landscape indices to assess the change in connectivity at the watershed level. At the patch and landscape scales, occupancy models had low predictability but suggest that gray squirrels are most susceptible to land-use change. At the watershed scale, declines in connectivity did not correspond with the decline of forest. This study highlights the importance of map resolution and consideration of matrix elements in constructing forecast models. Unforeseen drivers of land use, such as changing economic incentives, may also have important ramifications.  相似文献   

17.
Land abandonment is an important cause of changes in landscape patterns in the Mediterranean area. There is a need to monitor land use and land cover changes in order to provide quantitative evidence of the relationship between land abandonment and the formation of new landscape patterns. Appropriate management policies to encourage sustainable development can then be developed. This paper describes how to monitor landscape dynamics using different temporal land use and land cover data generated from field survey and airborne information. The results showed that the abandonment of agricultural land generally results in an increase of vegetation biomass. This process leads to homogenization of the landscape. In addition, abandonment promotes fragmentation of agricultural land. Based on these results, the paper discusses the implications for rural management policies concerning the abandonment of agricultural land and suggests recommendations for the development of such policies.  相似文献   

18.
19.
Human alteration of the landscape has an extensive influence on the biogeochemical processes that drive oxygen cycling in streams. We estimated trends from the mid-1990s to 2003, using the seasonal Mann-Kendall's test, for percent saturation dissolved oxygen (DO), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and ammonia-nitrogen (NH(3)-N) for 12 sites in the Rock Creek watershed, northwest Oregon, USA. In order to understand the influence of landscape change, scale, and stormwater runoff management on dissolved oxygen trends, we calculated land cover change through aerial photo interpretation at full-basin, local (near sample point) basin, and 100m stream buffer scales, for the years 1994 and 2000. Significant (p < or = 0.05) trends occurred in DO (increasing at five sites), COD (decreasing at seven sites), TKN (decreasing at five sites, increasing at one site), and NH(3)-N (decreasing at one site, increasing at one site). Significant land cover change occurred in agricultural land cover (-8% for the entire basin area) and residential land cover (+10% for the entire basin area) (p < or = 0.05). Correlation results indicated that: (1) forest cover negatively influenced COD at the full basin scale and positively influences NH(3)-N at local scales, (2) residential land cover influenced oxygen demand variables at local scales, (3) agricultural land cover did not influence oxygen demand, (4) local topography negatively influenced TKN and NH(3)-N, and (5) stormwater runoff management infrastructure correlated positively with COD at the local scale. This study indicates that landscape factors influencing DO conditions for the study streams act at multiple scales, suggesting that better knowledge of scale-process interactions can guide watershed managers' decision making in order to maintain improving water quality conditions.  相似文献   

20.
Key Elements of Landscape Pattern Measures   总被引:9,自引:0,他引:9  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号