首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life cycle assessment (LCA) is the standard technique used to make a quantitative evaluation about the ecological sustainability of a product or service. The life cycle inventory (LCI) data sets that provide input to LCA computations can express essential information about the operation of a process or production step. As a consequence, LCI data are often regarded as confidential and are typically concealed through aggregation with other data sets. Despite the importance of privacy protection in publishing LCA studies, the community lacks a formal framework for managing private data, and no techniques exist for performing aggregation of LCI data sets that preserve the privacy of input data. However, emerging computational techniques known as “secure multiparty computation” enable data contributors to jointly compute numerical results without enabling any party to determine another party’s private data. In the proposed approach, parties who agree on a shared computation model, but do not trust one another and also do not trust a common third party, can collaboratively compute a weighted average of an LCA metric without sharing their private data with any other party. First, we formulate the LCA aggregation problem as an inner product over a foreground inventory model. Then, we show how LCA aggregations can be computed as the ratio of two secure sums. The protocol is useful when preparing LCA studies involving mutually competitive firms.  相似文献   

2.
In order to effectively integrate environmental attributes into the product design and development processes, it is crucial to identify the significant environmental aspects related to a product system within a relatively short period of time. In this study, the usefulness of life cycle assessment (LCA) and a matrix method as tools for identifying the key environmental issues of a product system were examined. For this, a simplified LCA (SLCA) method that can be applied to Electrical and Electronic Equipment (EEE) was developed to efficiently identify their significant environmental aspects for eco-design, since a full scale LCA study is usually very detailed, expensive and time-consuming. The environmentally responsible product assessment (ERPA) method, which is one of the matrix methods, was also analyzed. Then, the usefulness of each method in eco-design processes was evaluated and compared using the case studies of the cellular phone and vacuum cleaner systems. It was found that the SLCA and the ERPA methods provided different information but they complemented each other to some extent. The SLCA method generated more information on the inherent environmental characteristics of a product system so that it might be useful for new design/eco-innovation when developing a completely new product or method where environmental considerations play a major role from the beginning. On the other hand, the ERPA method gave more information on the potential for improving a product so that it could be effectively used in eco-redesign which intends to alleviate environmental impacts of an existing product or process.  相似文献   

3.
Although most studies on the Fair Trade initiative are, to some extent, cognizant of its contribution to environmental sustainability, what the environmental aspect means to Fair Trade has not yet been explored fully. A review of environmental issues in the Fair Trade literature suggests that Fair Trade might influence participant producers’ farming practices even if it does not directly impact natural resources. This paper attempts to interpret Fair Trade certification as an intermediary institution that links two significant objectives of rural development in the global South—environmental conservation and poverty reduction. This theoretical concept is examined in different real settings by observing four cases of Southern small farmer groups involved in the Fair Trade initiative. Findings from these case studies imply that if Fair Trade certification ensures tangible benefits for small farmers, it can not only help such disadvantaged farmers but also work as an approach for natural resource management.  相似文献   

4.
Computer display technology is currently in a state of transition, as the traditional technology of cathode ray tubes is being replaced by liquid crystal display flat-panel technology. Technology substitution and process innovation require the evaluation of the trade-offs among environmental impact, cost, and engineering performance attributes. General impact assessment methodologies, decision analysis and management tools, and optimization methods commonly used in engineering cannot efficiently address the issues needed for such evaluation. The conventional Life Cycle Assessment (LCA) process often generates results that can be subject to multiple interpretations, although the advantages of the LCA concept and framework obtain wide recognition. In the present work, the LCA concept is integrated with Quality Function Deployment (QFD), a popular industrial quality management tool, which is used as the framework for the development of our integrated model. The problem of weighting is addressed by using pairwise comparison of stakeholder preferences. Thus, this paper presents a new integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), to assess the environmental behavior of alternative technologies in correlation with their performance and economic characteristics. Computer display technology is used as the case study to further develop our methodology through the modification and integration of various quality management tools (e.g., process mapping, prioritization matrix) and statistical methods (e.g., multi-attribute analysis, cluster analysis). Life cycle thinking provides the foundation for our methodology, as we utilize a published LCA report, which stopped at the characterization step, as our starting point. Further, we evaluate the validity and feasibility of our methodology by considering uncertainty and conducting sensitivity analysis.  相似文献   

5.
6.
Interviews were carried out with Japanese firms and environmental agencies regarding their current practices regarding life-cycle assessment (LCA). The results of this informal survey are compared with an executive survey of U.S. Fortune 500 companies. The findings show that Japanese LCA activity has increased rapidly over the past four years with several government agencies involved in LCA. Private industry has also founded LCA forums and recycling centers. The primary Japanese LCA interests include use in ecodesign and ecolabeling with the main environmental efforts focused on design for environment. Solid waste was identified as the most significant current environmental problem in Japan, in contrast to the United States where atmospheric and liquid discharges are ranked equally important. Neither the Japanese nor EPA plan to use LCA as a regulatory tool. This article summarizes several LCA case studies performed in Japan and lists the agencies involved in LCA development, ISO 14000, and ecoauditing/ecolabeling. Some recent Japanese legislation affecting LCA is also reviewed.  相似文献   

7.
The streamlined, matrix approach to environmental Life-Cycle Analysis (LCA) developed originally at AT&T by Graedel and Allenby can be adapted to manufacturing processes to produce a useful tool for Design for the Environment (DFE). Pollution prevention in manufacturing has typically focused on the environmental impact of processes at a manufacturer's site. However, it is important to recognize that a process has a “life cycle,” albeit not precisely like the life cycle associated with a product. Modification of processes can also have upstream and downstream effects. In this article, the authors show how, by using a streamlined LCA matrix, it is possible to evaluate the environmental impact associated with a process over the process's life cycle. This approach also allows managers to allocate resources to improve processes that have greater environmental impact and to assess process improvements.  相似文献   

8.
This paper deals with the application of Life Cycle Assessment (LCA) methodology for process design, and presents the initial findings of this analysis qualitatively. The work identifies a need for a methodological development of Life Cycle Process Design (LCPD). This is underpinned by a broad literature review. The literature review shows that the application of LCA as an environmental design instrument is recognized in literature. In contrast to that there is hardly any hint which role Life Cycle Costing (LCC) could play within environmental process design. Most interesting in this line is, how LCA and LCC can be combined for environmental process design to be finally the core instruments of LCPD. The applicability of LCA and LCC within LCPD is shown on the example of a novel biorefinery process under development. Both instruments (LCA and LCC) are already applied during basic process development in this work, parallel to laboratory research. The aim is to identify potential environmental threats at an early stage of process design and also to give a hint on economic feasibility. Additionally a trade-off between environmental and economic issues can be drawn out. On the basis of this analysis the role of LCA during process development is highlighted as well as difficulties and challenges are emphasized. One of the major obstacles is data availability for LCA as well as LCC in the basic design stage of a biotechnological process. The findings of this paper serve as basis for the methodological development of LCPD. It is emphasized that conducting LCA and LCC during basic process development can reveal some relevant action areas for process engineers, which may influence technical as well as economic feasibility. The results presented have to be understood as a first outlook and provide key aspects for future research on the topic of accompanying basic process research projects with LCA and LCC to support future sustainable process design.  相似文献   

9.
The aim of this paper is to evaluate two agroindustrial productive processes in their entirety (one organic and one semi-industrial), focusing on the comparison of impacts derived from the inputs and outputs of the system (life cycle assessment, LCA), integrated with a physical evaluation of the resources and natural services, on a common basis (emergy). Methods based on the joint use of LCA and emergy evaluation are useful, as they measure the contribution of environmental services and products to the productive process thus focusing primarily on the environmental impact of emissions and non-renewable energy inputs. The complementarity of the methods used in this paper contributes important elements and information useful for the comprehension of the organization of agriculture within Siena's territory. The results show important elements and useful information: (1) for the comprehension of the two agroecosystems' organization; (2) for the use of the energy flows that determine their development. Moreover, the combined use of emergy and LCA gives a comparative thermodynamic performance evaluation between organic and semi-industrial farming.  相似文献   

10.
Global warming represents one of the most critical internationally perceived environmental issues. The growing, and increasingly global, wine sector is one of the industries which is under increasing pressure to adopt approaches for environmental assessment and reporting of product-related greenhouse gas emissions. The International Organization for Vine and Wine has recently recognized the need to develop a standard and objective methodology and a related tool for calculating carbon footprint (CF). This study applied this tool to a wine previously analyzed using the life cycle assessment (LCA) methodology. The objective was to test the tool as regards both its potential and possible limitations, and thus to assess its suitability as a standard tool. Despite the tool's user-friendliness, a number of limitations were noted including the lack of accurate baseline data, a partial system boundary and the impossibility of dealing with the multi-functionality issue. When the CF and LCA results are compared in absolute terms, large discrepancies become obvious due to a number of different assumptions, as well as the modeling framework adopted. Nonetheless, in relative terms the results seem to be quite consistent. However, a critical limitation of the CF methodology was its focus on a single issue, which can lead to burden shifting. In conclusion, the study confirmed the need for both further improvement and adaptation to additional contexts and further studies to validate the use of this tool in different companies.  相似文献   

11.
Integrated smelter-refineries play an important role in the recovery of multiple metals from complex primary and secondary materials, and hence in closing metals cycles. Processes in these facilities are strongly interconnected, dynamic, and multifunctional, which challenges a typical representation in life cycle assessment (LCA). This is especially true when LCA is applied to calculate the environmental profile of single metals products.This study examines methodological requirements for assessing complex co-product systems using attributional LCA through a static, gate-to-gate inventory model that quantifies the environmental impacts of each of the metal products of an integrated precious metals smelter-refinery. The model is based on a large number of subprocesses and is formulated using detailed industry data, which allows quantification of the sensitivity of the results with respect to allocation rationales and the data collection period.The results within one impact category vary strongly among metals (up to four orders of magnitude for copper compared to rhodium). Moving from mass- to value-based allocation changes the result for a given metal by up to two orders of magnitude. If value-based allocation is used, the selected reference year for metals prices influences the results by up to a factor of two.Allocation rationales are critically analyzed, and it is shown that none reflect the business model or other system drivers. While the model is focused on quantifying environmental impacts of metal outputs, the actual process is economically driven to efficiently treat a continuously changing feed mix. The complexity of a smelter-refinery cannot be captured by static, attributional inventory models, which is why the choice of allocation rationale remains arbitrary. Instead, marginal, parameterized models are needed; however, such models are substantially more time and data intensive and require disclosure of more detailed, process specific data.  相似文献   

12.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions.  相似文献   

13.
This paper summarizes the results and the lessons learnt from an LCA case study comparing acoustic automotive components. Three alternative acoustic components produced by the Brazilian automotive sector are considered: dual-layer polyurethane (DL-PU) panel, recycled textile absorption-barrier-absorption (ABA-cotton) panel and recycled textile DL (DL-cotton) panel. DL-PU is a “status-quo” alternative, composed mainly of synthetic plastics and the two other alternatives are mainly made of recycled cotton fibres. Using the Life Cycle Assessment (LCA) method, the three following phases of the panels’ life cycle are examined: production, use and end-of-life. For the latter, two end-of-life scenarios are analysed: landfill and incineration with energy recovery. For the LCA model, some Life Cycle Inventory (LCI) datasets have been adapted from the data available in the EcoInvent database in order to adjust to the Brazilian context. LCA results show that, within the entire life cycle, the DL-cotton option, which combines two layers of recycled fibres of different densities, is overall the best alternative from an environmental perspective. This result is therefore independent from the end-of-life scenario. This is mainly due to the lower weight of this component, which is extremely important for the transportation aspects, but also due to its lower consumption of fossil resources, to the energy saving during its production and to the avoidance of textile disposal that would happen otherwise. The obtained results confirm the available literature dealing with the use of renewable fibres in industrial products. The particular behaviour of recycled fibres compared to virgin ones (in terms of shared contribution of agricultural production and of avoidance of landfilling) is highlighted in this paper, thanks to the application of the “50/50” allocation rule. LCA results are discussed in terms of their potential use in an R&D context. Further research needs are also derived from the case study, including the potential benefits of developing multi-objective optimization methods that include environmental impact to be used in the design of such a component.  相似文献   

14.
Synthesis of distributed wastewater treatment plants (WTPs) has focused on cost reduction, but never on the reduction of environmental impacts. A mathematical optimization model was developed in this study to synthesize existing distributed and terminal WTPs into an environmentally friendly total wastewater treatment network system (TWTNS) from a life cycle perspective. Life cycle assessment (LCA) was performed to evaluate the environmental impacts of principal contributors in a TWTNS. The LCA results were integrated into the objective function of the model. The mass balances were formulated from the superstructure model, and the constraints were formulated to reflect real wastewater treatment situations in industrial plants. A case study validated the model and demonstrated the effect of the objective function on the configuration and environmental performance of a TWTNS. This model can be used to minimize environmental impacts of a TWTNS in retrofitting existing WTPs in line with cleaner production and sustainable development.  相似文献   

15.
Separate collection of municipal solid waste has overcome the 50% threshold in the Asti District in northern Italy, nearly one-third being composed of household and green organic waste. In order to address present and future solutions, it becomes therefore fundamental to assess the environmental performances of the current management of organic waste from separate collection. A from-gate-to-cradle life cycle assessment (LCA) model has been developed by expanding system boundaries, in order to carry out the assessment in the context of the whole waste management streamline. The environmental performances of an existing aerobic plant were made available, based on field measured data, by paying attention to the role and contribution of waste management subsystems. The need for actual and reliable data on materials and energy input, as well as gross and net gains from materials recovery, including benefits arising from use of compost in farming activities, was probably the major drawback that had to be faced. The study integrated the findings of different investigations from the literature with field measured data in order to obtain a more comprehensive framework representative of the area under study. The results may help public administrators to better understand the suitability of using LCA tools when dealing with solid waste management strategies.  相似文献   

16.
生命周期评价是评价产品、工艺或活动(服务)整个生命周期阶段有关环境负荷,进而辨识和评价减少环境影响机会的一种非常有用的工具。将生命周期评价应用于固体废物环境管理,无疑对于我国建立科学化的固体废物环境管理模式具有十分重要的作用。本文对生命周期评价的定义、主要阶段、应用工具、特点进行了阐述,并对生命周期评价如何应用于我国固体废物环境管理进行了探讨。  相似文献   

17.
Separate collection of municipal solid waste has overcome the 50% threshold in the Asti District in northern Italy, nearly one-third being composed of household and green organic waste. In order to address present and future solutions, it becomes therefore fundamental to assess the environmental performances of the current management of organic waste from separate collection. A from-gate-to-cradle life cycle assessment (LCA) model has been developed by expanding system boundaries, in order to carry out the assessment in the context of the whole waste management streamline. The environmental performances of an existing aerobic plant were made available, based on field measured data, by paying attention to the role and contribution of waste management subsystems. The need for actual and reliable data on materials and energy input, as well as gross and net gains from materials recovery, including benefits arising from use of compost in farming activities, was probably the major drawback that had to be faced. The study integrated the findings of different investigations from the literature with field measured data in order to obtain a more comprehensive framework representative of the area under study. The results may help public administrators to better understand the suitability of using LCA tools when dealing with solid waste management strategies.  相似文献   

18.
19.
Life-Cycle Assessment (LCA) is an analytical tool that evaluates the environmental consequences of a product, process, or activity across its entire life cycle. LCA is used internationally by government and industry to obtain a comprehensive perspective of the interactions between an activity and the environment and provides a method to systematically identify opportunities for improvement. The framework is integrated into environmental management programs motivated by market awareness, public perception, and cost savings. The use of LCA is driven by external forces such as eco-labels and the recent development of the ISO 14000 standards. However, LCA has many shortcomings that need to be addressed. The concerns of poor data quality, data availability, high implementation costs, subjectivity, and lack of standardization have sent LCA into a state of flux. In light of the recent surge of interest in LCA, the authors of this article have conducted a corporate survey that targets the implementation of LCA. Their goal is to determine the level of activity of LCA among known practitioners and to elucidate common themes. This article presents their findings from responses by 34 companies that were known to be actively involved in LCA or contemplating its future use.  相似文献   

20.
Expanded polystyrene (EPS) and corrugated paperboard (CPB) are used in many industrial applications, such as containers, shock absorbers or simply as inserts. Both materials pose two different types of environmental problems. The first is the pollution and resource consumption that occur during the production of these materials; the second is the growing landfills that arise out of the excessive disposal of these packaging materials. Life cycle assessment or LCA will be introduced in this paper as a useful tool to compare the environmental performance of both EPS and CPB throughout their life cycle stages. This paper is divided into two main parts. The first part investigates the environmental impacts of the production of EPS and CPB from 'cradle-to-gate', comparing two inserts--both the original and proposed new designs. In the second part, LCA is applied to investigate various end-of-life cases for the same materials. The study will evaluate the environmental impacts of the present waste management practices in Singapore. Several 'what-if' cases are also discussed, including various percentages of landfilling and incineration. The SimaPro LCA Version 5.0 software's Eco-indicator 99 method is used to investigate the following five environmental impact categories: climate change, acidification/eutrophication, ecotoxicity, fossil fuels and respiratory inorganics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号