首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
The objective of this work was to study the technological feasibility of treating wastewater from a personal care industry (PCI-WW) in a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass on polyurethane foam. An assessment was made on how system efficiency and stability would be affected by: increasing organic load; supplementation of nutrients and alkalinity; and different feed strategies. The AnSBBR operated with 8-h cycles, stirring speed of 400 rpm, temperature of 30 °C, and treated with 2.0 L wastewater per cycle. First the efficiency and stability of the AnSBBR were studied when submitted to an organic loading rate (OLR) of 3.1–9.4 gCOD/(L d), and when the PCI-WW was supplemented with nutrients (sucrose, urea, trace metals) and alkalinity. The AnSBBR was shown to be robust and presented stability and removal efficiency exceeding 90%. At an OLR of 12.0 gCOD/(L d) efficiency became difficult to maintain due to the presence of commercial cleansers and disinfectants in the wastewater lots. In a subsequent stage the AnSBBR treated the wastewater supplemented with alkalinity, but with no nutrients at varying feed strategies and maintaining an OLR of approximately 9.0 gCOD/(L d). The first strategy consists of feeding 2.0 L of the influent batchwise [OLR of 9.4 gCOD/(L d)]. In the second 1.0 L of influent was fed-batchwise and an additional 1.0 L was fed fed-batchwise [OLR of 9.2 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was maintained but supplied in different periods. In the third strategy 1.0 L of treated effluent was maintained in the reactor and 1.0 L of influent was fed fed-batchwise [OLR of 9.0 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was different but the feed period was the same and the OLR was maintained by increasing the influent concentration. Comparison of the first and second strategies revealed that organic matter removal efficiency was unaffected (exceeding 90%). The third strategy resulted in a reduction in average removal efficiency from 91 to 83% when compared to the first one. A kinetic study resulted in first order kinetic parameters ranges from 0.42 to 1.46 h−1 at OLRs from 3.1 to 12.0 gCOD/(L d), respectively, and the second feed strategy [OLR of 9.2 gCOD/(L d)] was shown to be the most favorable.  相似文献   

2.
The objective of this work was to analyze the effect of the interaction between feeding strategy and COD/sulfate ratio on the removal efficiency of sulfate and organic matter from a synthetic wastewater. An anaerobic sequencing batch reactor with recirculation of the liquid phase and containing immobilized biomass on polyurethane foam (AnSBBR) was used. The AnSBBR with a total volume of 3.7 L, treated 2.0 L synthetic wastewater in 8-h cycles at 30 ± 1 °C and was inoculated with anaerobic biomass from a UASB. Two feeding strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. The COD/sulfate ratios assessed were 1 and 3. Based on these values and on the concentrations of organic matter (0.5–11.25 gCOD/L) and sulfate (0.5 and 2.5 gSO42?/L), the sulfate and organic matter loading rates applied equaled 1.5 and 4.5 gSO42?/L d for sulfate and 1.5, 4.5 and 13.5 gCOD/L d for organic matter. After stabilization of the system time profiles were run of monitored parameters (COD, sulfate, sulfide and sulfite). In general, the reactor showed to be robust for use in the anaerobic treatment of wastewaters containing sulfate. Gradual feeding (strategy b) of the carbon source favored sulfate reduction, resulting in sulfate removal efficiencies of 84–98% and organic matter removal efficiencies of 48–95%. The best results were observed under COD/sulfate ratio equal to 1 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 1.5 and 4.5 gCOD/L d for organic matter). When COD/sulfate ratio was 3 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 4.5 and 13.5 gCOD/L d for organic matter) the effect of feed mode became less significant. These results show that the strategy batch followed by fed-batch is more advantageous for COD/sulfate ratios near the stoichiometric value (0.67) and higher organic matter and sulfate concentrations.  相似文献   

3.
A mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass was applied to the treatment of a wastewater simulating the effluent from a personal care industry. The ASBR was operated with cycle lengths (tC) of 8, 12 and 24 h and applied volumetric organic loads (AVOL) of 0.75, 0.50 and 0.25 gCOD/L.d, treating 2.0 L liquid medium per cycle. Stirring frequency was 150 rpm and the reactor was kept in an isothermal chamber at 30 °C. Increase in tC resulted in efficiency increase at constant AVOL, reaching 77% at tC of 24 h versus 69% at tC of 8 h. However, efficiency decreased when AVOL decreased as a function of increasing tC, due to the lack of substrate in the reaction medium. Moreover, replacing part of the wastewater by a chemically balanced synthetic one did not yield the expected effect and system efficiency dropped.  相似文献   

4.
The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25–9.14 and 1.5–6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95–96%), BOD (97–98%) and TSS (98–99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8–4.2 kg COD/m3 day, 2.5–4.6 kg TSS/m3 day and 22,000–25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit.  相似文献   

5.
Two free water surface (FWS) and two subsurface flow (SSF) pilot-size wetlands were constructed for the evaluation of their performance in treating highway runoff (HRO) in the heart of the Mediterranean region, the island of Crete, at the southernmost point of Greece. Detailed recordings of the resources involved during the construction allowed a thorough calculation of the cost of the systems and the requirements in materials, man-hours, and equipment. The two identical FWS systems had a surface area of 33 m2 each, while the two identical SSF covered 32 m2 each. One FWS and one SSF, named FWS12 and SSF12, respectively, were designed with a hydraulic retention time (HRT) of 12 h, with each one capable of treating a maximum HRO of 12.6 m3/day. The other couple, named FWS24 and SSF24, respectively, was designed with an HRT of 24 h, with each receiving a maximum HRO of 6.3 m3/days. An influent storage tank was required to hold the runoff during the common storm events and control the flow rate (and the hydraulic retention time) into the wetlands. This construction represented 25% of the total construction cost, while 5% was spent on the influent automated (and sun-powered) control and distribution system, from the storage tank to the wetlands. The respective total cost allocated to the two SSF systems (€14,676) was approximately 10% higher than that of the FWS (€13,596), mainly due to the three different-sized gravel layers used in the SSF substrate compared to the topsoil used in the FWS, which tripled the cost and placement time. The Total Annual Economic Cost (TAEC) was €1799/year and €1847/year for the FWS and SSF pair, respectively. TAEC was also used to compare the economic efficiency of the systems per cubic meter of HRO treated and kilograms of COD and TSS removed from the wetlands during their first operational year. Based on these estimations, FWS12 recorded the lowest TAECCOD and TAECTSS values (€89.09/kg and €43.69/kg, respectively) compared to the other three systems, presenting a more economically favorable option.  相似文献   

6.
This experimental study was conducted to evaluate a membrane sequencing batch reactor (MSBR) with mixed culture photosynthetic bacteria for dairy wastewater treatment. The study was undertaken in two steps: laboratory and pilot scale experiments. In the first step, kinetics analysis of the MSBR was carried out in a laboratory scale experiment with influent COD concentration of 2500 mg/L. The pilot scale experiment was conducted to investigate the performance of the MSBR and checked the suitability of the kinetics for an engineering design. The kinetic coefficients Ks, k, kd, Y and μm were found to be 174-mg-COD/L, 7.42/d, 0.1383/d, 0.2281/d and 1.69/d, respectively. There were some deviations of COD removal efficiency between the design value and the actual value. From the kinetics estimation, COD effluent from the design was 27 mg/L while the average actual COD effluent from the experiment was 149 mg/L. Due to the different light source condition, the factors relating to light energy (i.e. Lf and IR%) must be incorporated into engineering design and performance prediction with these kinetic coefficients of the photosynthetic MSBR.  相似文献   

7.
The relationship between nutrient removal and loading rate was examined using data from five forested wetlands in Louisiana that have received secondarily treated effluent from 3 to 60 years. Loading rates ranged from 0.65 to 26.80 g/m2/yr for total nitrogen and 0.18 to 8.96 g/m2/yr for total phosphorus. At loading rates below 20 g/m2/yr, total nitrogen concentrations in surface waters of Louisiana forested wetlands were reduced to background concentrations (i.e., ≤3 mg/l). Similarly, at loading rates below 2 g/m2/yr, total phosphorus concentrations were also generally reduced to background concentrations (i.e., ≤1 mg/l). These data demonstrate that freshwater forested wetlands can reduce nutrient concentrations in treated effluent to background concentrations present in relatively undisturbed wetlands. An understanding of the relationship between loading rates and nutrient removal in natural wetlands is important, particularly in Louisiana where discharges of fresh water are being used in ecosystem restoration.  相似文献   

8.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

9.
The kinetics of CO2 absorption in unloaded aqueous ammonia solution were measured using a string of discs contactor with the aqueous ammonia concentrations ranging 0.9–5.4 kmol/m3 and temperatures ranging 298.3–321.9 K. The reaction rates strongly increase with the concentration and less strongly with temperature. Both the termolecular and zwitterion models were applied in this study as amine solutions. The parameters for both of the models were interpreted. The kinetic rate constants for CO2 absorption in aqueous ammonia were compared with those for other amines and were found to be around 1/10 that for monoethanolamine. The fitting results for the termolecular mechanism seem more robust than those for the zwitterion mechanism from a statistical perspective.  相似文献   

10.
Seaweed can be anaerobically digested for the production of energy-rich methane. However, the use of seaweed digestate as a fertilizer may be restricted because of the high heavy metal content especially cadmium. Reducing the concentration of heavy metals in the digestate will enable its use as a fertilizer. In this laboratory-scale study, the potential of seaweed and its leachate in the production of methane were evaluated in batch tests. The effect of removing the heavy metals from seaweed leachate was evaluated in both batch test and treatment in an upflow anaerobic sludge blanket (UASB) reactor. The heavy metals were removed from seaweed leachate using an imminodiacetic acid (IDA) polyacrylamide cryogel carrier. The methane yield obtained in the anaerobic digestion of seaweed was 0.12 N l CH4/g VSadded. The same methane yield was obtained when the seaweed leachate was used for methane production. The IDA-cryogel carrier was efficient in removing Cd2+, Cu2+, Ni2+ and Zn2+ ions from seaweed leachate. The removal of heavy metals in the seaweed leachate led to a decrease in the methane yield. The maximum sustainable organic loading rate (OLR) attained in the UASB reactor was 20.6 g tCOD/l/day corresponding to a hydraulic retention time (HRT) of 12 h and with a total COD removal efficiency of about 81%. Hydrolysis and treatment with IDA cryogel reduced the heavy metals content in the seaweed leachate before methane production. This study also demonstrated the suitability of the treatment of seaweed leachate in a UASB reactor.  相似文献   

11.
The treatment and reuse of domestic wastewater using an anaerobic baffled reactor (ABR) followed by a duckweed pond (DWP) were the main theme of the present study. The ABR was fed continuously with domestic wastewater at four HRTs ranging from 8 to 24 h and corresponds to organic loading rates ranging from 0.67 to 2.1 kg COD/m3/day. The ABR effluent was fed to a DWP operating at 10 and 15 days. The performance of the ABR at the four HRTs gave satisfactory results. Chemical oxygen demand (COD) removal was between 68 and 82%. Fecal coliform removal was between 1 to 2 logs. The 12- and 18-h hydraulic retention times (HRTs) gave close results, as indication of the possible selection of the 12-h HRT as the optimum operation for the ABR based on economic advantage. The ABR compartmentalized structure gave results higher than those produced by the one-stage digester and similar to those produced by the two-phase anaerobic digestion process. Duckweed ponds as post-treatment operated at 10 days and 15 days gave the best results at 15-day HRT, where it was possible to remove 73.4% of nitrogen and 65% of phosphorus and produce protein-rich dry duckweed of 105 kg/ha/day on average. The removal of fecal coliform (FC) in duckweed ponds was 3–4 logs. The final treated domestic sewage characteristics proved its compliance with the Egyptian standards for reuse in restricted irrigation.  相似文献   

12.
Separation of water for reuse is essential in an effluent treatment system, especially in activities with high water consumption, such as a pig production system. The objective of this work was to evaluate the efficiency of Tanfloc SG® coagulant tannin/organic flocculant used to treat effluent generated during the intensive rearing of swine. For the evaluation, laboratory and in situ tests (field test) were performed. The laboratory tests were performed to define the concentration (1 and 16%), dosage (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 milliliters of the solution), and time (24, 48, 72, and 96 hours) of coagulation/flocculation treatment of the solid portion of the effluent. The parameters pH, turbidity, oxidation reduction potential, dissolved oxygen, and electroconductivity (in microsiemens per centimeter) were evaluated using a multiparameter probe and the parameters ammonia (NH3), nitrate (NO3), and nitrite (NO2) in the laboratory, in relation to the coagulation/flocculation time of the solid part of the effluent. The use of tannin as a coagulant/flocculant of plant origin in the treatment of swine effluents was effective in reducing turbidity and concentrations of ammonia, nitrite, and nitrate, and it allowed separation of the solid–liquid phase in approximately 68% as liquid phase.  相似文献   

13.
This study uses rate parameters in pseudo-first-order (PFO) and pseudo-second-order (PSO) equations (k1 and k2qe, respectively) to judge the extent for approaching equilibrium in an adsorption process. Out of fifty-six systems collected from the literature, the adsorption processes with a k2qe value between 0.1 and 0.8 min?1 account for as much as 70% of the total. These are classified as fast processes. This work compares the validity of PFO and PSO equations for the adsorption of phenol, 4-chlorophenol (4-CP), and 2,4-dichlorophenol (2,4-DCP) on activated carbons prepared from pistachio shells at different NaOH/char ratios. The activated carbons, recognized as microporous materials, had a surface area ranging from 939 to 1936 m2/g. Findings show that the adsorption of phenol, 4-CP, and 2,4-DCP on activated carbons had a k2qe value of 0.15–0.58 min?1, reflecting the fast process. Evaluating the operating time by rate parameters revealed that k2qe was 1.6–1.8 times larger than k1. These findings demonstrate the significance of using an appropriate kinetic equation for adsorption process design.  相似文献   

14.
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 μGal for 2003 and 3.5 μGal for 2005. The resulting time-lapse uncertainty is 5.3 μGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530 kg/m3. Uncertainty in determining the average density is estimated to be ±65 kg/m3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.  相似文献   

15.
ABSTRACT: One component of the filamentous algal community of a northern fen ecosystem in central Michigan was studied under conditions of nutrient enrichment by secondarily treated sewage effluent during one growing season. The productivity of Cladophora spp. measured by continuous flow bioassay was 2.6 g dry weight m day at the site of effluent addition compared to 0.085 g m day at the control site. Under conditions of nutrient enrichment, uptake by bioassay Cladophora spp. averaged 12 mg m?2day?1for phosphorus and 55 mg m?2day?1for nitrogen, compared to 0.01 mg m?2 day?1and 0.16 mg m?2day?1for phosphorus and nitrogen, respectively, in the control area. At the end of the growing season approximately 4.3 g N m?2 and 0.96 g P m?2were immobilized in Cladophora algal biomass. Algal growth temporarily immobilized 3.0 percent of the nitrogen and 1.0 percent of the phosphorus added as sewage effluent. Gross productivity of surface water in the fen averaged 1.5 g O2m?2day?1at the nutrient enriched site, compared to 0.5 g O2 m?2day?1at the control area. Gross productivity, community respiration and reaeration constant values in the fen were similar to data collected by other researchers in shallow water aquatic systems, but only at the fertilized sites.  相似文献   

16.
This study focuses on a lab-scale rotating biological contactor (RBC) treating vegetable oil wastewater with high BOD and COD. The fabricated RBC was checked for efficiency in degrading polluted wastewater under different operating conditions. The maximum removal efficiencies for BOD and COD were 95.75% and 89%, respectively. This high removal percentage was obtained with 30% submergence of 10 discs rotating at 8 rpm. For the first time, bio-kinetic models were applied to the experimental results for vegetable oil wastewater. The best fit was obtained with the modified Stover-Kincannon and Grau model. The saturation constant (Ks) values were 1.872 and 3.024 g/L/d for BOD and COD, respectively, for the modified Stover-Kincannon and Grau model. For the Grau second-order model, the saturation constant was 1.416 and 3.744 g/L/d for BOD and COD, respectively. The predicted effluent BOD and COD values of the modified Stover–Kincannon model fitted almost exactly with the experimental values. This clearly predicts that this model can be best used to predict effluent BOD and COD concentration in a Rotating Biological contactor treating vegetable oil wastewater. The kinetic parameters determined in this study can be used to improve the design and operation of continuous mode RBC systems.  相似文献   

17.
An integrated investigation on wastewater characterization and the environmental effects from the COGIDO pulp and paper mill in Bien Hoa Industrial Estate, Vietnam, a chlorine bleached soda integrated pulp and paper mill operating without a chemical recovery system, on the receiving water body was conducted during the rainy and dry seasons in 1993 and 1995. The pollution load from the mill was very high in terms of BOD, COD and SS (CODm: 58.7 t/d; BOD: 33.3 t/d and SS: 25.1 t/d). The effluent toxicity was determined using four toxicity tests: the green micro-alga, Selenastrum capricornutum, Microtox (marine bacteria: Photobacterium phosphoreum), the duckweed, Lemna aequinoctialis, and fish (silver barb: Puntius gonionotus, and Tilapia: Tilapia nilotica). Selenastrum capricornutum was the most sensitive among the tested organisms. The mill toxicity emission rate (TER) was as high as 338 610 (Selenastrum test). The bleaching-pulp and semi-chemical pulp plants which contributed the largest pollution load to the total COGIDO effluent, therefore, were targeted for abatement measures. Physico-chemical parameters as well as qualitative and quantitative aquatic organism composition for the river water were established. The BOD5 and COD values exceeded the potable surface water standard by a factor of 2 to 4. The species diversity and abundance of the phytoplankton, zooplankton and zoobenthos were found to be lower (20–40%) than that of unpolluted rivers in Vietnam, whereas pollution-indicator species increased up to four times during the dry season 1995.  相似文献   

18.
Recycling and conservation efforts for water are the need of the day because of the lack of new water sources and the ever-increasing demand for drinking water. Seedlings of Acacia nilotica L. were irrigated with: canal water (T1, control); municipal effluent (T2); textile effluent (T3); steel effluent (T4); textile + municipal effluent in 1:1 ratio (T5); steel + municipal effluent in 1:2 ratio (T6); steel + textile in 1:2 ratio (T8) and steel + municipal + textile in 1:2:2 ratio (T7) with views to observe effluents effect on the seedlings and its adaptability and to recommend safe disposal of these effluents. Seedlings in T6, T7 and T8 showed 50% lesser height and collar diameter than those in control. Seedlings in T2 attained greatest height, collar diameter, numbers of branches and produced 140 g dry biomass seedling−1. Highest concentration of manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) and lowest concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in the seedlings of T4, T6, T7 and T8 resulted in nutritional imbalance, mineral toxicity and reduction in photosynthetic (Pn) and transpiration (E) rates and caused seedling mortality. Seedlings of T3 had highest sodium concentration and low concentration of Ca, Mg and micronutrients resulting in nutritional imbalance, augmented chlorosis and reduced gas exchange and biomass by half as compared to control. Increased growth, Pn and E and biomass in seedlings of T5 over T3 and survival period in T6, T7 and T8 seedlings suggested a beneficial effect of effluents mixing. Unscientific disposal should be avoided and toxic concentration of metal ions␣may be reduced for long-term application and harmless disposal of effluents in afforestation and urban development.  相似文献   

19.
A reaction calorimeter was used to determine the enthalpies of absorption of CO2 in aqueous ammonia and in aqueous solutions of ammonium carbonate at temperatures of 35–80 °C. The heat of absorption of CO2 with 2.5 wt% aqueous ammonia solution was found to be about 70 kJ/mol CO2, which is lower than that with MEA (around 85 kJ/mol) at 35 and 40 °C. The value decreases with increased loading, but not to as low a value as expected by the carbonate–bicarbonate reaction (26.88 kJ/mol). The enthalpy of absorption of CO2 in aqueous ammonia at 60 and 80 °C decreases with loadings at first, then increases between 0.2 mol CO2/mol NH3 and 0.6 mol CO2/mol NH3, and then decreases again. The behavior of the heat of absorption of CO2 in 10 wt% ammonium carbonate solution was found to be the same as that of aqueous ammonia at loadings above 0.6 mol CO2/mol NH3. The heat of absorption increases with increasing temperature. The heats of absorption are directly related to the extent of the various reactions with CO2 and can be assessed from the species variation in the liquid phase.  相似文献   

20.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号