首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Thiocyanate (SCN) compounds in photo-processing wastewater (PPWW) could be treated by an SBR system without any release of thiocyanate to the atmosphere during the aeration step. An SCN loading greater than 84 g m(-3)d(-1) showed negative effects on the growth of bio-sludge and removal efficiencies of the system. The acclimatization period of the system was increased with an increase in SCN concentration or loading. The COD, BOD(5), TKN, and SCN removal efficiencies were 96.0 +/- 1.6%, 72 +/- 2%, 49 +/- 5%, and 82 +/- 3%, respectively, under an SCN loading of up to 84 g m(-3)d(-1). The removal efficiency of the system was repressed by SCN due to the repressed growth rate of nitrification bacteria. However, the removal efficiency could be increased with an increase in HRT or a decrease in SCN loading. Also, increases in HRT or decreases in SCN loading led to increased sludge age or solid retention time (SRT) and decreased the sludge volume index (SVI) value. The SRT and SVI of the system with synthetic wastewater containing 840 mg l(-1) SCN under an HRT of 3 days (SCN loading of 280 g m(-3)d(-1)) were 3.9 +/- 0.7 days and 65 +/- 4 ml g(-1), respectively, while they were 11.2+/-0.8 days and 55 +/- 6 ml g(-1), respectively under an HRT of 10 days (SCN loading of 84 g m(-3)d(-1)).  相似文献   

2.
A sequencing batch reactor biofilm (MSBR) system was modified from the conventional sequencing batch reactor (SBR) system by installing 2.7 m2 surface area of plastic media on the bottom of the reactor to increase the system efficiency and bio-sludge quality by increasing the bio-sludge in the system. The COD, BOD5, total kjeldahl nitrogen (TKN) and oil & grease removal efficiencies of the MSBR system, under a high organic loading of 1340 g BOD5/m3 d, were 89.3+/-0.1, 83.0+/-0.2, 59.4+/-0.8, and 82.4+/-0.4%, respectively, while they were only 87.0+/-0.2, 79.9+/-0.3, 48.7+/-1.7 and 79.3+/-10%, respectively, in the conventional SBR system. The amount of excess bio-sludge in the MSBR system was about 3 times lower than that in the conventional SBR system. The sludge volume index (SVI) of the MSBR system was lower than 100 ml/g under an organic loading of up to 1340 g BOD5/m3 d. However, the MSBR under an organic loading of 680 g BOD5/m3 d gave the highest COD, BOD5, TKN and oil & grease removal efficiencies of 97.9+/-0.0, 97.9+/-0.1, 79.3+/-1.0 and 94.8+/-0.5%, respectively, without any excess bio-sludge waste. The SVI of suspended bio-sludge in the MSBR system was only 44+/-3.4 ml/g under an organic loading of 680 g BOD5/m3 d.  相似文献   

3.
The Sequencing Batch Reactor (SBR) system employing activated sludge process is an alternative wastewater treatment technology. A cycle of the conventional SBR system generally consists of five periods, with complete aeration during the React period to oxidize the organic matter and nitrify the ammonium-nitrogen of wastewater. Laboratory-scale reactors were used to evaluate the feasibility of incorporating alternative aerobic-anoxic-aerobic stages within the React period for simultaneous removal of organic matter, N and P. Two cycles of SBR process per day were maintained.Under the operation strategy of 0.75-h fill, 8-h react (with continuous aeration), 3.25-h settle, draw and idle periods, the treatment performance became consistent after running the system for two to four cycles (1–2 days). The percentages of both BOD5 and COD removal were around 94% from Cycle 2 onwards, the BOD5 content dropped from initial 251 mg L−1 to less than 14 mg L−1 in the final effluent. A steady nitrification (about 97%) was obtained from Cycle 4 onwards, with 1 mg NH4+-N L−1 and 25 mg NO3-N L−1 present in the final effluent. This suggested that the time required for SBR system to acclimate and reach an equilibrium state was relatively short when compared with the time needed for continuous flow activated sludge system. The findings also show that 4-h aeration during the react period was long enough to achieve more than 90% nitrification. With the incorporation of a 3-h anoxic stage after the initial 4-h aeration of the react period, a satisfactory denitrification process was observed, with nitrate level dropped from 27 to around 8 mg L−1 within 3 h. The second aeration stage did not cause significant change in wastewater nitrogen content. The wastewater phosphate content declined rapidly during the initial 4-h aeration and P-release was not observed during the anoxic stage. A slight reduction of P was found in the second aeration stage suggesting that more P-uptake occurred in this stage. A 12-h cyclic SBR system with the incorporation of 4-h aerobic, 3-h anoxic and final 1-h aerobic stages into the 8-h react period was demonstrated to be able to remove C, N and P simultaneously.  相似文献   

4.
This work presents an analysis of a stirred anaerobic sequencing discontinuous reactor with different substrate feeding strategies resulting in batch, fed-batch/batch and fed-batch operating modes. The reactor, containing granulated biomass, was fed with approximately 2.0L of synthetic domestic wastewater with Chemical Oxygen Demand of nearly 500 mg/L per cycle and operated at 30 degrees C and 50 rpm. Three feeding strategies with a total cycle time of 6 h, including 30-min settling, were adopted: batch mode with a fill cycle of 6 min, a fed-batch/batch mode with fill cycles of 60, 120 and 240 min and fed-batch mode with a fill cycle of 320 min. The system attained average non-filtered and filtered substrate removal efficiency of 78 and 84%, respectively, for all operating conditions, presenting good stability, solid retention and no granule break-up. A first order kinetic model with a residual organic matter concentration was proposed to analyze the influence of the feeding strategy on the performance during a cycle and bicarbonate alkalinity and total volatile acids concentration profiles were also quantified in order to verify the transient stability behavior.  相似文献   

5.
The effect of organic loading on the performance of a mechanically stirred anaerobic sequencing biofilm batch reactor (ASBBR) has been investigated, by varying influent concentration and cycle period. For microbial immobilization 1-cm polyurethane foam cubes were used. An agitation rate of 500 rpm and temperature of 30+/-2 degrees C were employed. Organic loading rates (OLR) of 1.5-6.0gCODl(-1)d(-1) were applied to the 6.3-l reactor treating 2.0 l synthetic wastewater in 8 and 12-h batches and at concentrations of 500-2000mgCODl(-1), making it possible to analyze the effect of these two operation variables for the same organic loading range. Microbial immobilization on inert support maintained approximately 60 gTVS in the reactor. Filtered sample organic COD removal efficiencies ranged from 73 to 88% for organic loading up to 5.4gCODl(-1)d(-1). For higher organic loading (influent concentration of 2000mgCODl(-1) and 8-h cycle) the system presented total volatile acids accumulation, which reduced organics removal efficiency down to 55%. In this way, ASBBR with immobilized biomass was shown to be efficient for organic removal at organic loading rates of up to 5.4gCODl(-1)d(-1) and to be more stable to organic loading variations for 12-h cycles. This reactor might be an alternative to intermittent systems as it possesses greater operational flexibility. It might also be an alternative to batch systems suspended with microorganisms since it eliminates both the uncertainties regarding granulation and the time necessary for biomass sedimentation, hence reducing the total cycle period.  相似文献   

6.
An assessment was made of cheese whey treatment in a mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass. The effect of increasing organic load and decreasing influent alkalinity supplementation (as sodium bicarbonate) was analyzed. The reactor operated on 8-h cycles with influent COD concentrations of 500, 1000, 2000 and 4000 mg/L, corresponding to volumetric organic loads of 0.6 to 4.8 mgCOD/L.d. Organic COD removal efficiencies were always above 90% for filtered samples. These results were obtained with an optimized alkalinity supplementation of 50% (ratio between mass of NaHCO3 added and mass of influent mgNaHCO3/mgCOD) in the assays with 500 and 1000 mgCOD/L and of 25% in the assays with 2000 and 4000 mgCOD/L. Initial alkalinity supplementation was equal to the mass of influent COD (100%). The system showed formation of viscous polymer-like substances. These were probably of microbiological origin occurring mainly at influent CODs of 2000 and 4000 mg/L and caused some biomass flotation. This could, however be controlled to enable efficient and stable reactor operation.  相似文献   

7.
Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.  相似文献   

8.
A moving bio-film (MB), made from the inner tube of used tyres was applied in a conventional-aerobic-SBR for increasing the system efficiency and quality of bio-sludge due to good sedimentation (the density of 1.925+/-0.21 g/cm(3)), non-biodegradability and re-usability of the media without any regeneration. The total bio-sludge mass of the MB-aerobic-SBR was about 30% higher than that of the conventional-aerobic-SBR resulting in a reduction of the F/M value of the system and amount of suspended bio-sludge waste. The amount of suspended bio-sludge waste, SVI and SRT of the MB-aerobic-SBR under a low organic loading of 80+/-9.3g BOD(5)/m(3)-d were 1,485+/-146 mg/d, 51+/-3.7 ml/g and 10.1+/-5.1 days, respectively while they were 1,800+/-152 mg/d, 69+/-4.0 ml/g and 8.3+/-5.3 days, respectively in the conventional-aerobic-SBR. The BOD(5), TKN and TP removal efficiencies of the MB-aerobic-SBR were about 1-2, 2-3 and 10-12% higher, respectively, than that of the conventional-aerobic-SBR. Also, the BOD(5) and COD removal efficiencies of the MB-aerobic-SBR were higher than 95% even when the system was operated with synthetic wastewater containing 800 mg/l BOD(5) under a very low HRT of 1.5 days (organic loading of 528+/-50.8 g BOD(5)/m(3)-d). The effluent BOD(5), COD, total kjeldahl nitrogen, total phosphorus and suspended solids of the MB-aerobic-SBR under a high organic loading of 528+/-50.8 g BOD(5)/m(3)-d were 45+/-5.1, 37+/-3.6, 4.1+/-1.0, 1.5+/-0.80 and 41+/-2mg/l, respectively.  相似文献   

9.
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5, 1.0, 2.0 and 3.0 g SO(4)(2-) L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-) L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-) L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor.  相似文献   

10.
Reject water from sewage sludge processing may contain high concentrations of nutrients and organic pollutants and cause internal pollution load at a sewage treatment plant (STP) if circulated to the headworks of an STP. In the present study removal of nitrogen and bis (2-ethylhexyl) phthalate (DEHP) from reject water was studied in two sequencing batch reactors (SBRs) with different aerobic/anoxic periods during a 6-h total cycle period. Ammonia-nitrogen (NH(4)-N) was almost totally removed in both reactors, apparently by nitrification throughout the run, while denitrification declined with decreasing SCOD in the influent resulting in an increase in the effluent nitrate-nitrogen (NO(3)-N) concentration. DEHP removals from the water phases were above 95% in both reactors, while the average total removals were 36 and 42%, calculated on a mass basis. Much higher removals occurred in the experiment where one of the systems was spiked with a given amount of DEHP. The spiking experiment suggested that SBRs had the potential to remove DEHP biologically from reject water but that the removal was restricted by the poor bioavailability of DEHP as a result of sorption to solids. This study showed that SBR has the potential to cut the internal load of nitrogen and hydrophobic organic pollutants in cases where reject water is circulated to the headworks of an STP.  相似文献   

11.
An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.  相似文献   

12.
Leachate generated in a landfill may not be treated by conventional biological treatment due to its nature and complexity. The process of forming aerobic granules in batch sequencing reactors having features such as; reducing the settling process time and saving energy consumption and high decomposition rate have been noticed by researchers. In the present study, the structure of sequencing batch reactors (SBRs) was evaluated for the formation of granules, which were subsequently utilized for the treatment of landfill leachate. The experiment was initiated by using the GSBR, containing 1200 ml with different apparatuses, to develop granular sludge, and synthetic wastewater was added to reinforcement. The selected parameters for the operational hydraulic retention time (HRT) of the wastewater (6-h cycles) included feeding, idle, aeration, settling, and discharge. Furthermore, the controlled conditions were the dissolved oxygen (DO) range of 2–2.2 mg/L, temperature range of 20–23℃, and pH of 7.5–8.3. The chemical oxygen demand (COD), mixed liquor suspended solids (MLSS), and sludge volume index (SVI) daily were measured at the influent and effluent of GSBR reactor. The main properties of aerobic granular sludge were identified during the research procedures, and the remarkable settling and potent, high-density microbial structure of the granules were confirmed. The mean size of the formulated granules was estimated at 7.46 ± 1.8 mm, and the volume of the biomass also increased from approximately 1607 to 4137 mg/L through the granulation process. Moreover, 98% of the influent chemical oxygen demand (COD) could be removed by the formulated granular sludge, and the final-stage organic loading rate was estimated at 5.65 COD/m3/day. According to the results, GSBRs could be employed for the formulation of aerobic granular sludge for the treatment of landfill leachate.  相似文献   

13.
This study aimed to characterize raw municipal and dairy wastewaters. The quality of the collected wastewaters was determined by measuring 30 quality parameters, such as phenols, oxidation-reduction potential, oil and grease, total organic carbon (TOC), manganese, total viable count of bacteria (TVC), salinity, and biodegradability. Results were compared with wastewater disposal standards. This study also aimed to describe the potential application and performance of biological trickling filters (BTFs) in municipal and dairy wastewater treatment. Detailed reviews of trickling filter models were explained. Results revealed that two wastewater samples exceeded standard limits. The raw municipal and dairy wastewaters need treatment prior to disposal to the natural environment. Additionally, BTFs are efficient municipal and dairy wastewater treatments.  相似文献   

14.
Eight small-scale municipal wastewater treatment plants were evaluated over a period of 19 months in the suburb of Las Rozas in Madrid (Spain). Four plants used compact extended aeration, two used conventional activated sludge, two used conventional extended aeration, one used a rotary biodisc reactor and the other used a peat bed reactor. The best results were obtained from the plants that used conventional technologies and the biodisc. Conventional activated sludge and extended aeration had higher removal efficiencies for ammonia, TSS, COD and BOD(5) and produced good quality final effluents for final disposal in accordance with the discharge standard. Empirical equations that correlated the concentration of dissolved oxygen in the effluents with the efficiencies of TSS, ammonia, COD and BOD(5) removals for all plants evaluated were obtained. The performance of the plants using compact extended aeration was affected more than those using conventional technologies or rotary biodisc when the capacity exceeded that of its initial design.  相似文献   

15.
Due to the toxic effects of trichlorophenol (TCP) on microorganisms, biological treatment efficiencies of TCP containing wastewaters are usually low. Synthetic wastewater containing 2,4,6-TCP was biologically treated in a hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with effluent recycle in order to improve COD and TCP removals. Effects of the feed TCP concentration on COD, TCP and toxicity removal performance of the system were investigated for the feed TCP between 50 and 450 mg L(-1) while the sludge age (solids retention time, SRT) and hydraulic residence time (HRT) were kept constant at 20 d and 25 h, respectively. Biomass concentrations in the packed column and in the aeration tank decreased with increasing feed TCP concentrations due to toxic effects of TCP on the organisms. Low biomass concentrations in the system at high feed TCP contents resulted in low COD, TCP and toxicity removals. Therefore, percent TCP, COD and toxicity removals decreased with increasing feed TCP concentrations especially above 400 mg L(-1). The effluent TCP concentrations were lower than 20 mg L(-1) for the feed TCP concentrations below 390 mg L(-1) resulting in TCP and COD removals above 90%. Specific rates of TCP and COD removals increased with the feed TCP due to low biomass concentrations at high TCP contents. The system should be operated at a feed TCP lower than 400 mg L(-1) in order to obtain more than 90% TCP, COD and toxicity removals under the specified experimental conditions.  相似文献   

16.
Sulfate-reducing bacteria (SRB) that could grow on modified Postgate C medium (PC) containing chromium(VI) were isolated from industrial wastewaters and their chromium(VI) reduction capacities were investigated as a function of changes in the initial pH values, chromium, sulfate, NaCl and reactive dye concentrations. The optimum pH value at 50 mg l(-1) initial chromium(VI) concentration was determined to be 8. Chromium(VI) reduction by SRB was investigated at 22.7-98.4 mg l(-1) initial chromium(VI) concentrations. At the end of the experiments, the mixed cultures of SRB were found to reduce within 2-6 days more than 99% of the initial chromium(VI) levels, which ranged from 22.7 to 74.9 mg l(-1). The effects of the initial 0-9.0 g l(-1) concentrations of disodium sulfate and 0-6% (w/v) concentrations of NaCI to chromium reduction showed that the lowest concentrations of sulfate and NaCI were the best for chromium reduction in the PC medium including 50 mg l(-1) chromium(VI). Chromium(VI) reduction in 50 mg l(-1) and 25-100 mg l(-1) Remazol Blue, Reactive Black B or Reactive Red RB containing media were also investigated. In the experiments, 25-30% of the initial dye concentrations and 95% of the chromium(VI) was removed from the medium at the end of 72-h and 24-h incubation periods, respectively.  相似文献   

17.
The Mediterranean Region is a semi-arid area whose land is facing serious erosion, causing adverse impacts on agriculture. To improve the water availability, researchers have proposed the reclamation and reuse of treated wastewater. In this paper, we report the main findings of 10 years of research on the efficiencies of a conventional activated sludge process and a submerged membrane bioreactor, with particular emphasis on the removal of non-conventional pollutants. The studies showed that the membrane bioreactor produced a virtually solids-free, high-quality permeate: most nutrients, heavy metals, and persistent organic pollutants were removed, and in particular, dioxins, furans, and polychlorinated biphenyls were typically present at concentrations below the detection limit. Moreover, the total coliforms count decreased by 4–5 log and Escherichia coli was absent from the membrane bioreactor permeate. These results, combined with the continuing reduction of the capital and operating costs for this approach, suggest that membrane bioreactors are an increasingly cost-effective technology to produce treated effluents that are suitable for reuse.  相似文献   

18.
The PEMMC-Biobarrel (packed-bed of entrapped mixed microbial cells with Bio-barrel) process and MEMMC-Biobarrel (moving EMMC-Biobarrel) process were investigated for enhancing concurrent organic and nitrogen removal with applied intermittent aeration. For the PEMMC-Biobarrel process, the EMMC-Biobarrel carriers were employed at a packing ratio of 20%. In the MEMMC-Biobarrel process, the EMMC-Biobarrel carriers with a packing ratio of 10% were added along with the activated sludge (AS) in the bioreactor. Three different hydraulic retention times (HRTs) of 9, 6 and 4 h were applied. Aeration was provided intermittently at time schedules of 1 h air on/1 h air off, 1 h on/1.5 h off and 1 h on/2 h off. Nitrogen removal in the PEMMC-Biobarrel system was not improved by increasing the intermittent non-aeration time period. On the other hand, the MEMMC-Biobarrel process enhanced nitrogen removal with increasing non-aeration time even though the SCOD/N(TIN) ratio decreased from 6 to 4. Significant denitrification during the aeration cycle was observed in the MEMMC-Biobarrel process. The MEMMC-Biobarrel process demonstrated the most efficient organic and nitrogen removal at an HRT of 6 h with an intermittent aeration time schedule of 1 h on/2 h off. Nitrogen removal of 80% was achieved, which was about 15% higher compared to the AS system. TCOD and SCOD removal efficiencies were 80% and 75%, respectively.  相似文献   

19.
The main objective of this paper was to perform a preliminary comparative study between chemical and electrochemical coagulation processes, both followed by flocculation and sedimentation of an effluent from an upflow anaerobic sludge blanket (UASB) reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrochemical treatment removed up to 67% (with aluminum electrodes) and 82% (with stainless-steel electrodes) of the remaining chemical oxygen demand (COD) and 84% (stainless steel) and 98% (aluminum) of the color in the wastewater. These efficiencies were achieved with an energy consumption ranging from 14 to 20 Wh l(-1). The coagulation-flocculation treatment with ferric chloride and aluminum sulfate removed up to 87% and 90% of COD and 94% and 98% of color, respectively. The addition of a high molecular weight cationic polymer enhanced both COD and color removal efficiencies. The two post-treatment processes proved to be technically feasible; however the economical feasibility could not be assessed since the experiments were performed with small reactors that could distort scale factors.  相似文献   

20.
The Macroinvertebrate Biotic Integrity Index (MBII) was developed from data collected at 574 wadeable stream reaches in the Mid-Atlantic Highlands region (MAHR) by the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program (EMAP). Over 100 candidate metrics were evaluated for range, precision, responsiveness to various disturbances, relationship to catchment area, and redundancy. Seven metrics were selected, representing taxa richness (Ephemeroptera richness, Plecoptera richness, Trichoptera richness), assemblage composition (percent non-insect individuals, percent 5 dominant taxa), pollution tolerance [Macroinvertebrate Tolerance Index (MTI)], and one functional feeding group (collector-filterer richness). We scored metrics and summed them, then ranked the resulting index through use of independently evaluated reference stream reaches. Although sites were classified into lowland and upland ecoregional groups, we did not need to develop separate scoring criteria for each ecoregional group. We were able to use the same metrics for pool and riffle composite samples, but we had to score them differently. Using the EMAP probability design, we inferred the results, with known confidence bounds, to the 167,797 kilometers of wadeable streams in the Mid-Atlantic Highlands. We classified 17% of the target stream length in the MAHR as good, 57% as fair, and 26% as poor. Pool-dominated reaches were relatively rare in the MAHR, and the usefulness of the MBII was more difficult to assess in these reaches. The process used for developing the MBII is widely applicable and resulted in an index effective in evaluating region-wide conditions and distinguishing good and impaired reaches among both upland and lowland streams dominated by riffle habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号