首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volcanic soil can be used to remove metals from wastewaters. Once used, it is disposed in landfills. The utilization of this material in the cement industry as an alternative raw material was evaluated using life cycle assessment (LCA) methodology. This possibility has been studied from an environmental point of view in a Chilean cement facility, representative of the current operation state of art, including both technical and economic analysis. Two scenarios were compared: Scenario 1, which corresponds to the existing cement production process, and Scenario 2, which represents cement production using spent volcanic soil. With the exception of the categories of carcinogens (C) and minerals (M), the comparative results are favourable to Scenario 2, specially regarding to the category of ecotoxicity (E), mainly due to the avoided landfilling emissions of the volcanic soil. When considering the damage assessment, damage to human health (HH), ecosystem quality (EQ) and resources (R) are lower in Scenario 2. In addition, sensitivity analyses were performed to study the influence of particular parameters (i.e., transport of spent volcanic soil, CO2 emissions from the clinkerization process and heavy metals leaching from the spent volcanic soil) on the results of the assessment. The use of alternative raw materials (in this case, spent volcanic soil), which present the advantage to be wastes from other technical systems, appear to allow the development of cement production in a more sustainable way, slightly improving the economy of the process. The spent volcanic soil can be treated with zero cost for the wastewater treatment plant with savings of 0.23€ for each tonne of clinker production. Establishing a sound management way for the spent volcanic soil could foment its possible use as mineral adsorbent in industrial wastewater treatment facilities.  相似文献   

2.
Activated fly ash/slag blended cement   总被引:2,自引:0,他引:2  
This paper presents the results of the preparation of an ecological cementing material from granulated blast-furnace slag (GBFS) and Class C fly ash (CCFA). The desulphurization gypsum, calcined at 600–800 °C for 0.5–1.5 h, works as the main ingredient of the activator in the cementing material. The optimized formulation of the cementing material was obtained with the aid of factorial design method: slag, 70%; CCFA, 18%; activator, 12%. The “partial super-fine grinding process” was adopted to improve the performance, i.e., 85% of the mixture is ground to Blaine fineness of 3500 cm2/g, 15% further ground to around 5000 cm2/g. The compressive strength of 28 days of the cement mortar is up to 49 MPa and flexural strength 8.4 MPa. The hydration products, investigated by SEM and X-ray diffraction, are mainly ettringite and C–S–H gel.  相似文献   

3.
Various wastes and by-product materials are generated in the Sultanate of Oman including reclaimed asphalt pavement (RAP) aggregate, demolition concrete, cement by-pass dust (CBPD), copper slag, petroleum-contaminated soils (PCS), discarded tires, incinerator ash, and others. Recycling of such materials in construction is not practiced. Research data are also minimal into the potential use of selected materials in construction applications. This paper will present the results of several laboratory studies conducted into the use of PCS in asphalt concrete mixtures; on the use of CBPD in soil stabilization and flowable fill mixtures; on the utilization of copper slag and CBPD as cementitious materials; on the use of incinerator ash in cement mortars; and on the use of RAP aggregate in road bases and sub-bases. Laboratory data generally indicate that it is feasible to partially reuse some of these materials in construction provided that economic incentives and environmental concerns are taken into consideration.  相似文献   

4.
Recycling End of Life (EOL) concrete into high-grade aggregate for new concrete is a challenging prospect for the building sector because of the competing constraints of low recycling process cost and high aggregate product quality. A further complicating factor is that, from the perspective of the environment, there is a strong societal drive to reduce bulk transport of building materials in urban environments, and to apply more in situ recycling technologies for Construction & Demolition Waste. The European C2CA project investigates a combination of smart demolition, grinding of the crushed concrete in an autogenous mill to increase the liberation of cement mortar from the surface of aggregates and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in a demonstration project involving 20,000 tons of EOL concrete from two office towers in Groningen, the Netherlands. Results show that the +4 mm recycled aggregate compares favorably with natural aggregate in terms of workability and the compressive strength of the new concrete, showing 30% higher strength after 7 days.  相似文献   

5.
One of the techniques used to dispose of 4,000 tons per day (TPD) of non‐recyclable waste from Tehran is to burn it as an alternative fuel in cement kilns. This practice reduces emissions from landfills, prevents the loss of waste energy, and conserves fossil fuel resources. The aim of our study was to conduct a life cycle assessment (LCA) of clinker production in cement kilns using a combination of natural gas, mazut, a form of heavy, low‐quality fuel oil, and refuse‐derived fuel (RDF) from Tehran. We used SimaPro 7.1 software to perform an LCA of 1 kilogram (kg) of clinker produced using the following fuel combinations: the first scenario involved natural gas consumption alone, the second scenario involved a combination of natural gas and mazut, with the mazut providing 5% to 30% of the heating value needed to produce cement clinker in the kiln, and the third scenario involved a combination of natural gas and RDF (providing 5% to 30% of the heating needed in the kiln). The impact categories in the LCA of global warming, eutrophication, and acidification were assessed by the Center of Environmental Science of Leiden University (Centrum voor Milieukunde Leiden—CML) CML 2000 method. The results indicated that the third scenario, involving natural gas and RDF, reduced acidification by 2.14–11.5% and global warming by 0–1.3% relative to the first scenario involving the use of only natural gas. In addition, we observed a 0.65–3.81% reduction in acidification and a 0.9–3.8% reduction in global warming under the third scenario compared with the second scenario (co‐firing of natural gas and mazut). The amount of nitrogen oxides (NOX) emitted from the combustion of the Tehran RDF was greater than that was emitted when burning mazut. Therefore, reduction of nitrogen from the RDF composition is necessary. This study indicates that the use of Tehran RDF (with reduced nitrogen) in Tehran cement kilns does not increase cement kiln NOX, sulfur dioxide (SO2), and carbon dioxide (CO2) emissions; however, we need to conduct additional investigation into the chemical composition of the Tehran waste before using solid waste in place of fossil fuels.  相似文献   

6.
在对国内兰炭生产工艺流程应用及现状介绍的基础上,概括总结了旧式低温干馏阶段和现阶段兰炭生产过程中固体废物的产生节点、种类、性质和主要处置方式。结果表明,旧式低温干馏阶段,兰炭生产过程中产生的固体废物主要包括煤筛分破碎工序产生的末煤和煤矸石、筛焦工序产生的焦粉、焦油冷却收集系统产生的焦油渣等;现阶段,兰炭生产过程中产生的固体废物主要包括煤筛分破碎工序产生的末煤和煤矸石以及破碎过程中经除尘器收集的煤尘、筛焦工序产生的焦粉、废水处理污泥、焦油冷却收集系统产生的焦油渣、脱硫工序产生的脱硫残液等。其中末煤、煤矸石、煤尘、焦粉作为一般工业固废全部综合利用,废水污泥、焦油渣、脱硫残液主要掺入原料煤中自行消化处置。  相似文献   

7.
The increasing use and subsequent accumulation of polystyrene containers has triggered a substantial environmental problem. This study investigated using varied percentages of solid waste polystyrene disposable food dishes in the production of lightweight concrete samples with 350 kilograms per cubic meter (kg/m3) of cement and a density of 1,300 kg/m3. The polystyrene disposable dishes were ground into beads of 0–3 millimeters (mm) and 3–6 mm in size. First, the characteristics of Type II Portland cement, polystyrene, and aggregates were examined. The following characteristics of concrete using ASTM International and British Standards Institution standards were tested: slump, compressive strength, ability to resist chloride ion penetration, and resistance of concrete to rapid freezing and thawing cycles. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy analytical techniques were also used. The slump of samples varied between 40 and 70 mm and was not dependent on either the polystyrene percentage or the size of the polystyrene beads in the concrete samples (p‐value > .05). The compressive strength of the concrete samples after 90 days of curing, and using different percentages of polystyrene, varied between 96 and 113 kilograms per square centimeter (kg/cm2). The resistance of the samples to the freezing and thawing cycle and chloride ion penetration were affected unfavorably by the presence of the polystyrene. The SEM technique indicated that concrete samples containing 15% and 25% polystyrene had denser crystals and less void than concrete samples with 40% and 55% polystyrene.  相似文献   

8.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

9.
Real-time electrochemical measurements of corrosion rate were performed to evaluate the respective corrosion rates of one boiler waterwall material (SA210) and three boiler superheater materials (T22, P91 and 347H) while firing Utah Western bituminous, Illinois high-sulfur bituminous and Powder River Basin (PRB) sub-bituminous coals in a 1.5 MW pulverized coal-fired furnace. The raw average measured corrosion rates were very low, between 0.0003 and 0.016 mm/year (0.012 and 0.63 mils/year) for most materials under air- and oxy-fired conditions. For some high-sulfur conditions measured corrosion rates were as high as 0.72 mm/year (28 mils/year). Waterwall corrosion rates decreased consistently when converting from air- to oxy-firing while superheater corrosion rates generally increased, although they were less than twice the air-fired rate under most conditions. Corrosion rates for the lower alloyed materials (SA210 and T22) increased significantly during transients from reducing to oxidizing conditions. Measured increases in the corrosion rate of 347H material under high sulfur and low temperature conditions, and associated decrease in corrosion rate at higher temperatures on this alloy, were consistent with the formation of trisulphates in the superheater deposits. The increase of corrosion rate with increased metal temperatures was demonstrated, as was the consistently repeatable nature of the observed results.  相似文献   

10.
水泥是重要的建筑材料,水泥工业的快速发展有力地支撑了我国经济的高速增长。但水泥生产过程中石灰石分解产生的CO2已成为重要的CO2排放源。根据2006年IPCC提供的水泥生产过程碳排放估算方法,采用全国吨水泥熟料比推算河南水泥熟料产量,对1990--2010年河南水泥生产过程CO2的排放量进行了估算,其结果可为河南省节能减排政策的制定提供科学依据。  相似文献   

11.
Two sets of experiments on typical Class G well cement were carried out in the laboratory to understand better the potential processes involved in well leakage in the presence of CO2. In the first set, good-quality cement samples of permeability in the order of 0.1 μD (10?19 m2) were subjected to 90 days of flow through with CO2-saturated brine at conditions of pressure, temperature and water salinity characteristic of a typical geological sequestration zone. Cement permeability dropped rapidly at the beginning of the experiment and remained almost constant thereafter, most likely mainly as a result of CO2 exsolution from the saturated brine due to the pressure drop along the flow path which led to multi-phase flow, relative-permeability effects and the observed reduction in permeability. These processes are identical to those which would occur in the field as well if the cement sheath in the wellbore annulus is of good quality. The second set of experiments, carried out also at in situ conditions and using ethane rather than CO2 to eliminate any possible geochemical effects, assessed the effect of annular spaces between wellbore casing and cement, and of radial cracks in cement on the effective permeability of the casing-cement assemblage. The results show that, if both the cement and the bond are of good quality, the effective permeability of the assemblage is extremely low (in the order of 1 nD, or 10?21 m2). The presence of an annular gap and/or cracks in the order of 0.01–0.3 mm in aperture leads to a significant increase in effective permeability, which reaches values in the range of 0.1–1 mD (10?15 m2). The results of both sets of experiments suggest that good cement and good bonding with casing and the surrounding rock will likely constitute a good and reliable barrier to the upward flow of CO2 and/or CO2-saturated brine. The presence of mechanical defects such as gaps in bonding between the casing or the formation, or cracks in the cement annulus itself, leads to flow paths with significant effective permeability. This indicates that the external and internal interfaces of cements in wells would most probably constitute the main flow pathways for fluids leakage in wellbores, including both gaseous/supercritical phase CO2 and CO2-saturated brine.  相似文献   

12.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

13.
The cement industry is one of the most significant sources of anthropogenic emissions of CO2. It is connected with the specific character of the production processes, during which great quantities of CO2 are produced. Basic actions to reduce CO2 emissions recommended by the European Union's, Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries, include: reduction of fuel consumption, selection of raw materials with low content of organic compounds and fuels with low coal contribution to heating value. All actions connected with the improvement of energy conversion efficiency of the cement production process cause CO2 emissions reduction. The use of at most acceptable by the valid standards amounts of waste as raw materials and additives for cement production, also brings about the reduction of significant part of CO2 emissions. These measures have been and continue to be pursued by the cement factories in Poland. This article describes the evolution of the cement industry in Poland over the period 1998–2008 and the resulting changes in CO2 emissions and explores the drivers for these changes. The sources of CO2 emissions in cement industry have been presented in this article as well as a discussion of potential ways to reduce Polish cement industry emissions even further.  相似文献   

14.
The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 × 5 × 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions – 50% of [waste + (120 g Ca(OCl)2 + 290 g Na2SO4) kg?1 of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF.  相似文献   

15.
Sustainable development and eco-efficiency are urgent and imperative demands for the well-being of our planet, continued growth of a society, and human development. Traditional Portland cement production seems unsustainable due to consumption of huge natural resources and energy and significant CO2 emissions. The volume of industrial wastes is increasing significantly, leading to a number of economical and ecological problems. Although industrial wastes can be incorporated in cementitious materials by various traditional methods, the substitution ratio of industrial wastes in cementitious materials is relatively low to avoid unacceptable performance loss. Novel methods, such as improving hydraulic activities of metallurgical slags by adding composition adjusting material at high temperature, improving surface cementitious properties of fly ashes by dehydration and rehydration treatment, and arranging cement clinker and industrial wastes in the particle size distribution of blended cements according to their hydraulic activities, are reviewed. These methods provide more effective approach to prepare high performance blended cements with larger amount of industrial wastes, leading to a very significant role in CO2 emissions reducing, resources and energy conservation of the cement industry.  相似文献   

16.
A national material flow model for concrete, the most popular construction material in Ireland, was developed based on the framework of material flow analysis. Using this model the Irish concrete cycle for the year 2007 was constructed by analysing the material life cycle of concrete which consists of the three phases of: production (including extraction of raw materials and manufacture of cement), usage (ready-mix and other products) and waste management (disposal or recovery). In this year, approximately 35 million metric tonnes of raw materials were consumed to produce 5 million metric tonnes of cement and 33 million metric tonnes of concrete. Concrete production was approximately 8 metric tonnes per capita. By comparison, the concrete waste produced in that year was minimal at only 0.3 million metric tonnes. Irish building stock is young and there was little demolition of structures in the year of study. However this build up of construction stock will have implications for the future waste flows when the majority of stock built in the last decade (43% of residential stock was constructed in the last 15 years) reaches its end of life.  相似文献   

17.
The results of the treatment of fly ash from a municipal solid waste incinerator (MSWI) by melting are described, and the safety and the effectiveness of using the slag produced by this melting treatment are studied. The properties of the MSWI fly ash slag were analyzed, to evaluate the feasibility of its reuse as a substitute for part of the cement required in mortar preparation. This MSWI fly ash slag was found to be comprised mainly of SiO2 and CaO, which can be substituted for up to 20% of the cement content in mortar, without sacrificing the quality of the resultant concrete. In fact, the concrete thus produced has greater compressive strength, 10% higher than that without the substitution. The setting time of the fresh mortar becomes lengthens as increasing amounts of cement are replaced; while the spread flow value increases with the increasing percentage of cement substitution. X-ray diffraction analysis reveals that when the W/C=0.38 and the curing AGE=28 days, the crystal patterns in the mortar samples, prepared with different amounts of cement having been replaced by MSWI fly ash slag are similar. According to the results of the toxic characteristic leaching procedure analysis, MSWI fly ash slag should be classified as general non-hazardous industrial waste, that meets the effluent standard. Therefore, the reuse of MSWI fly ash slag is feasible, and will not result in pollution due to the leaching of heavy metals.  相似文献   

18.
Solid waste management is gaining significant importance with the ever-increasing quantities of industrial by-products and wastes. With the environmental awareness and scarcity of space for landfilling, wastes/by-product utilization has become an attractive alternative to disposal. Several industrial by-products are produced from manufacturing processes, service industries and municipal solid wastes. Some of these industrial by-products/waste materials could possibility be used in cement-based materials.Coal combustion by-products (CCBs) represent incombustible materials left after combustion of coal in conventional and/or advanced clean-coal technology combustors. These include fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean-coal technology combustors. This paper briefly describes various coal combustion products produced, as well as current best recycling use options for these materials. Materials, productions, properties, potential applications in manufacture of emerging materials for sustainable construction, as well as environmental impact are also briefly discussed.  相似文献   

19.
新疆油田公司供热公司为提高除尘效率,减少SO_2排放量,将多管除尘器改造为湿式除尘器,介绍了湿式除尘器的结构和除尘原理。针对存在的问题,通过改进溢流箱结构解决了水位控制问题,烟气含尘量和SO_2排放量均达到GB 13271—2001《锅炉大气污染物排放标准》。介绍了利用纯碱、电石渣、锅炉的冲渣水与除尘器流出的冲灰水混合这三种烟气脱硫方法,其中,锅炉的冲渣水与除尘器流出的冲灰水混合的烟气脱硫方法综合效果最好。  相似文献   

20.
Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240–330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号