首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the viability of modeling the instantaneous thermal efficiency (ηith) of a solar still was determined using meteorological and operational data with an artificial neural network (ANN), multivariate regression (MVR), and stepwise regression (SWR). This study used meteorological and operational variables to hypothesize the effect of solar still performance. In the ANN model, nine variables were used as input parameters: Julian day, ambient temperature, relative humidity, wind speed, solar radiation, feed water temperature, brine water temperature, total dissolved solids of feed water, and total dissolved solids of brine water. The ηith was represented by one node in the output layer. The same parameters were used in the MVR and SWR models. The advantages and disadvantages were discussed to provide different points of view for the models. The performance evaluation criteria indicated that the ANN model was better than the MVR and SWR models. The mean coefficient of determination for the ANN model was about 13% and14% more accurate than those of the MVR and SWR models, respectively. In addition, the mean root mean square error values of 6.534% and 6.589% for the MVR and SWR models, respectively, were almost double that of the mean values for the ANN model. Although both MVR and SWR models provided similar results, those for the MVR were comparatively better. The relative errors of predicted ηith values for the ANN model were mostly in the vicinity of ±10%. Consequently, the use of the ANN model is preferred, due to its high precision in predicting ηith compared to the MVR and SWR models. This study should be extremely beneficial to those coping with the design of solar stills.  相似文献   

2.
The main focus of this study was to compare the Grey model and several artificial neural network (ANN) models for real time flood forecasting, including a comparison of the models for various lead times (ranging from one to six hours). For hydrological applications, the Grey model has the advantage that it can easily be used in forecasting without assuming that forecast storm events exhibit the same stochastic characteristics as the storm events themselves. The major advantage of an ANN in rainfall‐runoff modeling is that there is no requirement for any prior assumptions regarding the processes involved. The Grey model and three ANN models were applied to a 2,509 km2 watershed in the Republic of Korea to compare the results for real time flood forecasting with from one to six hours of lead time. The fifth‐order Grey model and the ANN models with the optimal network architectures, represented by ANN1004 (34 input nodes, 21 hidden nodes, and 1 output node), ANN1010 (40 input nodes, 25 hidden nodes, and 1 output node), and ANN1004T (14 input nodes, 21 hidden nodes, and 1 output node), were adopted to evaluate the effects of time lags and differences between area mean and point rainfall. The Grey model and the ANN models, which provided reliable forecasts with one to six hours of lead time, were calibrated and their datasets validated. The results showed that the Grey model and the ANN1010 model achieved the highest level of performance in forecasting runoff for one to six lead hours. The ANN model architectures (ANN1004 and ANN1010) that used point rainfall data performed better than the model that used mean rainfall data (ANN1004T) in the real time forecasting. The selected models thus appear to be a useful tool for flood forecasting in Korea.  相似文献   

3.
Abstract: The concern about water quality in inland water bodies such as lakes and reservoirs has been increasing. Owing to the complexity associated with field collection of water quality samples and subsequent laboratory analyses, scientists and researchers have employed remote sensing techniques for water quality information retrieval. Due to the limitations of linear regression methods, many researchers have employed the artificial neural network (ANN) technique to decorrelate satellite data in order to assess water quality. In this paper, we propose a method that establishes the output sensitivity toward changes in the individual input reflectance channels while modeling water quality from remote sensing data collected by Landsat thematic mapper (TM). From the sensitivity, a hypothesis about the importance of each band can be made and used as a guideline to select appropriate input variables (band combination) for ANN models based on the principle of parsimony for water quality retrieval. The approach is illustrated through a case study of Beaver Reservoir in Arkansas, USA. The results of the case study are highly promising and validate the input selection procedure outlined in this paper. The results indicate that this approach could significantly reduce the effort and computational time required to develop an ANN water quality model.  相似文献   

4.
Reservoir outflow is an important variable for understanding hydrological processes and water resource management. Natural streamflow variation, in addition to the streamflow regulation provided by dams and reservoirs, can make streamflow difficult to understand and predict. This makes them a challenge to accurately simulate hydrologic processes at a daily scale. In this study, three Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN), were examined and compared to model reservoir outflow. Past, current, and future hydrologic and meteorological data were used as model inputs, and the outflow of next day was used as prediction. Simulation results demonstrated that all three models can reasonably simulate reservoir outflow. For Carlyle Lake, the coefficient of determination and Nash–Sutcliffe efficiency were each close to one for the three models. The coefficient of determination, relative mean bias, and root mean square error indicated that the SVM performed better than the RF and ANN, but the SVM output displayed a larger relative mean bias than that from RF and ANN. For Lake Shelbyville, the ANN model performed better than RF and SVM when considering the coefficient of determination, Nash–Sutcliffe efficiency, relative mean bias, and root mean square error. The study results demonstrate that the three ML algorithms (RF, SVM, and ANN) are all promising tools for simulating reservoir outflow. Both the accuracy and efficacy of the three ML algorithms are considered to support practitioners in planning reservoir management.  相似文献   

5.
A reliable model for any wastewater treatment plant is essential in order to provide a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. This process is complex and attains a high degree of nonlinearity due to the presence of bio-organic constituents that are difficult to model using mechanistic approaches. Predicting the plant operational parameters using conventional experimental techniques is also a time consuming step and is an obstacle in the way of efficient control of such processes. In this work, an artificial neural network (ANN) black-box modeling approach was used to acquire the knowledge base of a real wastewater plant and then used as a process model. The study signifies that the ANNs are capable of capturing the plant operation characteristics with a good degree of accuracy. A computer model is developed that incorporates the trained ANN plant model. The developed program is implemented and validated using plant-scale data obtained from a local wastewater treatment plant, namely the Doha West wastewater treatment plant (WWTP). It is used as a valuable performance assessment tool for plant operators and decision makers. The ANN model provided accurate predictions of the effluent stream, in terms of biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) when using COD as an input in the crude supply stream. It can be said that the ANN predictions based on three crude supply inputs together, namely BOD, COD and TSS, resulted in better ANN predictions when using only one crude supply input. Graphical user interface representation of the ANN for the Doha West WWTP data is performed and presented.  相似文献   

6.
This paper describes a method for predicting local scour around bridge piers using an artificial neural network (ANN). Methods for selecting input variables, calibrations of network control parameters, learning process, and verifications are also discussed. The ANN model trained by laboratory data is applied to both laboratory and field measurements. The results illustrate that the ANN model can be used to predict local scour in the laboratories and in the field better than other empirical relationships that are currently in use. A parameter study is also carried out to investigate the importance of each input variable as reflected in data.  相似文献   

7.
ABSTRACT: Artificial neural networks (ANNs) are tested for the output updating of one‐day‐ahead and three‐day‐ahead streamflow forecasts derived from three lumped conceptual rainfall/runoff (R‐R) models: the GR4J, the IHAC, and the TOPMO. ANN output updating proved superior to a parameter updating scheme and to the ‘simple’ output updating scheme, which always replicates the last observed forecast error. In fact, ANN output updating was able to compensate for large differences in the initial performance of the three tested lumped conceptual R‐R models, which the other tested updating approaches were not able to achieve. This is done mainly by incorporating input vectors usually exploited for ANN R‐R modeling such as previous rainfall and streamflow observations, in addition to the previous observed error. For one‐day‐ahead forecasts, the performance of all three lumped conceptual R‐R models, used in conjunction with ANN output updating, was equivalent to that of the ANN R‐R model. For three‐day‐ahead forecasts, the performance of the ANN‐output‐updated conceptual models was even superior to that of the ANN R‐R model, revealing that the conceptual models are probably performing some tasks that the ANN R‐R model cannot map. However, further testing is needed to substantiate the last statement.  相似文献   

8.
Abstract: With the popularity of complex, physically based hydrologic models, the time consumed for running these models is increasing substantially. Using surrogate models to approximate the computationally intensive models is a promising method to save huge amounts of time for parameter estimation. In this study, two learning machines [Artificial Neural Network (ANN) and support vector machine (SVM)] were evaluated and compared for approximating the Soil and Water Assessment Tool (SWAT) model. These two learning machines were tested in two watersheds (Little River Experimental Watershed in Georgia and Mahatango Creek Experimental Watershed in Pennsylvania). The results show that SVM in general exhibited better generalization ability than ANN. In order to effectively and efficiently apply SVM to approximate SWAT, the effect of cross‐validation schemes, parameter dimensions, and training sample sizes on the performance of SVM was evaluated and discussed. It is suggested that 3‐fold cross‐validation is adequate for training the SVM model, and reducing the parameter dimension through determining the parameter values from field data and the sensitivity analysis is an effective means of improving the performance of SVM. As far as the training sample size, it is difficult to determine the appropriate number of samples for training SVM based on the test results obtained in this study. Simple examples were used to illustrate the potential applicability of combining the SVM model with uncertainty analysis algorithm to save efforts for parameter uncertainty of SWAT. In the future, evaluating the applicability of SVM for approximating SWAT in other watersheds and combining SVM with different parameter uncertainty analysis algorithms and evolutionary optimization algorithms deserve further research.  相似文献   

9.
This paper examines the application of advanced computer image processing techniques integrated with communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera for solving the problem of solid waste collection and automated bin level detection. A new method of bin level detection is proposed that uses a Gabor wavelet filter as a feature extractor. Taking advantage of the desirable characteristics of Gabor filters, such as mask size and frequency selectivity, we have designed four filters corresponding to different frequency values for the extraction of waste features from images of the bin. The feature vector output based on Gabor filters is used as the input of the classification algorithm, which is a feed-forward back propagation (BP) network. The effectiveness of the proposed method is demonstrated on a large number of images. Both the mask size and the frequency of the Gabor filter allow it to serve as a feature extractor, and the bin level detector with the Gabor wavelet filter in conjunction with the BP acts as a classifier to provide a robust solution for solid waste automated bin level detection, collection and management.  相似文献   

10.
Abstract: Alluvial fans in southern California are continuously being developed for residential, industrial, commercial, and agricultural purposes. Development and alteration of alluvial fans often require consideration of mud and debris flows from burned mountain watersheds. Accurate prediction of sediment (hyper‐concentrated sediment or debris) yield is essential for the design, operation, and maintenance of debris basins to safeguard properly the general population. This paper presents results based on a statistical model and Artificial Neural Network (ANN) models. The models predict sediment yield caused by storms following wildfire events in burned mountainous watersheds. Both sediment yield prediction models have been developed for use in relatively small watersheds (50‐800 ha) in the greater Los Angeles area. The statistical model was developed using multiple regression analysis on sediment yield data collected from 1938 to 1983. Following the multiple regression analysis, a method for multi‐sequence sediment yield prediction under burned watershed conditions was developed. The statistical model was then calibrated based on 17 years of sediment yield, fire, and precipitation data collected between 1984 and 2000. The present study also evaluated ANN models created to predict the sediment yields. The training of the ANN models utilized single storm event data generated for the 17‐year period between 1984 and 2000 as the training input data. Training patterns and neural network architectures were varied to further study the ANN performance. Results from these models were compared with the available field data obtained from several debris basins within Los Angeles County. Both predictive models were then applied for hind‐casting the sediment prediction of several post 2000 events. Both the statistical and ANN models yield remarkably consistent results when compared with the measured field data. The results show that these models are very useful tools for predicting sediment yield sequences. The results can be used for scheduling cleanout operation of debris basins. It can be of great help in the planning of emergency response for burned areas to minimize the damage to properties and lives.  相似文献   

11.
ABSTRACT: Herein, a recently developed methodology, Support Vector Machines (SVMs), is presented and applied to the challenge of soil moisture prediction. Support Vector Machines are derived from statistical learning theory and can be used to predict a quantity forward in time based on training that uses past data, hence providing a statistically sound approach to solving inverse problems. The principal strength of SVMs lies in the fact that they employ Structural Risk Minimization (SRM) instead of Empirical Risk Minimization (ERM). The SVMs formulate a quadratic optimization problem that ensures a global optimum, which makes them superior to traditional learning algorithms such as Artificial Neural Networks (ANNs). The resulting model is sparse and not characterized by the “curse of dimensionality.” Soil moisture distribution and variation is helpful in predicting and understanding various hydrologic processes, including weather changes, energy and moisture fluxes, drought, irrigation scheduling, and rainfall/runoff generation. Soil moisture and meteorological data are used to generate SVM predictions for four and seven days ahead. Predictions show good agreement with actual soil moisture measurements. Results from the SVM modeling are compared with predictions obtained from ANN models and show that SVM models performed better for soil moisture forecasting than ANN models.  相似文献   

12.
Artificial neural networks (ANNs) are being used increasingly to predict and forecast water resources' variables. The feed-forward neural network modeling technique is the most widely used ANN type in water resources applications. The main purpose of the study is to investigate the abilities of an artificial neural networks' (ANNs) model to improve the accuracy of the biological oxygen demand (BOD) estimation. Many of the water quality variables (chemical oxygen demand, temperature, dissolved oxygen, water flow, chlorophyll a and nutrients, ammonia, nitrite, nitrate) that affect biological oxygen demand concentrations were collected at 11 sampling sites in the Melen River Basin during 2001-2002. To develop an ANN model for estimating BOD, the available data set was partitioned into a training set and a test set according to station. In order to reach an optimum amount of hidden layer nodes, nodes 2, 3, 5, 10 were tested. Within this range, the ANN architecture having 8 inputs and 1 hidden layer with 3 nodes gives the best choice. Comparison of results reveals that the ANN model gives reasonable estimates for the BOD prediction.  相似文献   

13.
Remotely sensed variables such as land cover type and snow-cover extent can currently be used directly and effectively in a few specific hydrologic models. Regression models can also be developed using physiographic and snow-cover data to permit estimation of discharge characteristics over extended periods such as a season or year. Most models, however, are not of an appropriate design to readily accept as input the various types of remote sensing parameters that can be obtained now or in the future. Because this new technology has the potential for producing hydrologic data that has significant information content on an areal basis, both inexpensively and repetitively, effort should be devoted now to either modifying existing models or developing new models that can use these data. Minor modifications would at least allow the remote sensing data to be used in an ancillary way to update the model state variables, whereas major structural modifications or new models would permit direct input of the data through remote sensing compatible algorithms. Although current remote sensing inputs to hydrologic models employ only visible and near infrared data, model modification or development should accommodate microwave and thermal infrared data that will be more widely available in the future.  相似文献   

14.
Meta heuristic algorithms have been introduced as a powerful method to solve the nonlinear optimization problems. These algorithms have been employed in many complex engineering problems due to their high capability in finding the solutions and reaching the optimal results within a short period of time. Optimization of distributed generation units in distribution systems, which have profoundly impacted on the system losses and voltage profile, is one of these nonlinear problems. In this study, a novel objective function was proposed for optimization procedure by meta-heuristic algorithms. The related objective function consists of the total cost of distributed generation units, cost of the purchased natural gas, cost of distribution system power losses, and penalty for greenhouse gas emissions. The electrical, cooling, and heating loads were considered in this study. In the distribution system, the waste and fuel cell were used to supply the required heating and cooling loads. The meta-heuristic algorithms including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Imperialist Competitive Algorithm (ICA) were employed to find the optimal location and size of distributed generation units in a distribution system. A detailed performance analysis was done on 13 bus radial distribution system. The performances of three algorithms were compared with each other and results showed that the PSO was the fastest; and had the best solution and optimum results. Furthermore, the PSO reached the optimum solution in a fewer number of iterations than the GA and ICA algorithms.  相似文献   

15.
固液分离法处理废钻井液的实验研究   总被引:3,自引:1,他引:2  
废钻井液对环境的污染是一个难以解决的问题。针对塔里木油田的地质情况,使用固液分离法对部分废钻井液样品进行了实验研究工作。固液分离法采用两次处理工艺流程。即先经一级初步絮凝处理和强化离心分离,使大部分固相去除,然后对脱出的废液进行第二级絮凝处理后即可达到排放要求。实验结果表明:固液分离法能够将废钻井液分离成固-液两相,其液相能够达到排放要求,固相残渣对环境污染程度大幅度降低甚至无污染;若将此处理法同其它方法相结合,如坑内密封法、固化法等相结合会得到更满意的环保效果。  相似文献   

16.
In the past few decades, solid waste management systems in Europe have involved complex and multi-faceted trade-offs among a plethora of technological alternatives, economic instruments, and regulatory frameworks. These changes resulted in various environmental, economic, social, and regulatory impacts in waste management practices which not only complicate regional policy analysis, but also reshape the paradigm of global sustainable development. Systems analysis, a discipline that harmonizes these integrated solid waste management strategies, has been uniquely providing interdisciplinary support for decision making in this area. Systems engineering models and system assessment tools, both of which enrich the analytical framework of waste management, were designed specifically to handle particular types of problems. Though how to smooth out the barriers toward achieving appropriate systems synthesis and integration of these models and tools to aid in the solid waste management schemes prevalent in European countries still remains somewhat uncertain. This paper conducts a thorough literature review of models and tools illuminating possible overlapped boundaries in waste management practices in European countries and encompassing the pros and cons of waste management practices in each member state of the European Union. Whereas the Southern European Union (EU) countries need to develop further measures to implement more integrated solid waste management and reach EU directives, the Central EU countries need models and tools with which to rationalize their technological choices and management strategies. Nevertheless, considering systems analysis models and tools in a synergistic way would certainly provide opportunities to develop better solid waste management strategies leading to conformity with current standards and foster future perspectives for both the waste management industry and government agencies in European Union.  相似文献   

17.
Diesel engines are being increasingly adopted by many car manufacturers today, yet no exact mathematical diesel engine model exists due to its highly nonlinear nature. In the current literature, black-box identification has been widely used for diesel engine modelling and many artificial neural network (ANN) based models have been developed. However, ANN has many drawbacks such as multiple local minima, user burden on selection of optimal network structure, large training data size, and over-fitting risk. To overcome these drawbacks, this article proposes to apply an emerging machine learning technique, relevance vector machine (RVM), to model and predict the diesel engine performance. The property of global optimal solution of RVM allows the model to be trained using only a few experimental data sets. In this study, the inputs of the model are engine speed, load, and cooling water temperature, while the output parameters are the brake-specific fuel consumption and the amount of exhaust emissions like nitrogen oxides and carbon dioxide. Experimental results show that the model accuracy is satisfactory even the training data is scarce. Moreover, the model accuracy is compared with that using typical ANN. Evaluation results also show that RVM is superior to typical ANN approach.  相似文献   

18.
This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.  相似文献   

19.
This paper introduces a violation analysis approach for the planning of regional solid waste management systems under uncertainty, based on an interval-parameter fuzzy integer programming (IPFIP) model. In this approach, several given levels of tolerable violation for system constraints are permitted. This is realized through a relaxation of the critical constraints using violation variables, such that the model's decision space can be expanded. Thus, solutions from the violation analysis will not necessarily satisfy all of the model's original constraints. Application of the developed methodology to the planning of a waste management system indicates that reasonable solutions can be generated through this approach. Considerable information regarding decisions of facility expansion and waste flow allocation within the waste management system were generated. The modeling results help to generate a number of decision alternatives under various system conditions, allowing for more in-depth analyses of tradeoffs between environmental and economic objectives as well as those between system optimality and reliability.  相似文献   

20.
Ground subsidence in abandoned underground coal mine areas can result in loss of life and property. We analyzed ground subsidence susceptibility (GSS) around abandoned coal mines in Jeong-am, Gangwon-do, South Korea, using artificial neural network (ANN) and geographic information system approaches. Spatial data of subsidence area, topography, and geology, as well as various ground-engineering data, were collected and used to create a raster database of relevant factors for a GSS map. Eight major factors causing ground subsidence were extracted from the existing ground subsidence area: slope, depth of coal mine, distance from pit, groundwater depth, rock-mass rating, distance from fault, geology, and land use. Areas of ground subsidence were randomly divided into a training set to analyze GSS using the ANN and a test set to validate the predicted GSS map. Weights of each factor’s relative importance were determined by the back-propagation training algorithms and applied to the input factor. The GSS was then calculated using the weights, and GSS maps were created. The process was repeated ten times to check the stability of analysis model using a different training data set. The map was validated using area-under-the-curve analysis with the ground subsidence areas that had not been used to train the model. The validation showed prediction accuracies between 94.84 and 95.98%, representing overall satisfactory agreement. Among the input factors, “distance from fault” had the highest average weight (i.e., 1.5477), indicating that this factor was most important. The generated maps can be used to estimate hazards to people, property, and existing infrastructure, such as the transportation network, and as part of land-use and infrastructure planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号