首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Human influence on California fire regimes.   总被引:6,自引:0,他引:6  
Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation.  相似文献   

2.
Indices of biotic integrity have become an established tool to quantify the condition of small non-tidal streams and their watersheds. To investigate the effects of watershed characteristics on stream biological condition, we present a new technique for regressing IBIs on watershed-specific explanatory variables. Since IBIs are typically evaluated on an ordinal scale, our method is based on the proportional odds model for ordinal outcomes. To avoid overfitting, we do not use classical maximum likelihood estimation but a component-wise functional gradient boosting approach. Because component-wise gradient boosting has an intrinsic mechanism for variable selection and model choice, determinants of biotic integrity can be identified. In addition, the method offers a relatively simple way to account for spatial correlation in ecological data. An analysis of the Maryland Biological Streams Survey shows that nonlinear effects of predictor variables on stream condition can be quantified while, in addition, accurate predictions of biological condition at unsurveyed locations are obtained.  相似文献   

3.
Riverine reservoirs have a short water retention time, which is ecologically more similar to that of rivers. Generally, phytoplankton-based approaches are used for lakes and periphytic diatom-based approach for rivers. To understand the differences in the responses of phytoplankton and periphytic diatoms to environmental variables for riverine reservoirs, we collected periphytic diatom samples on artificial substrata as well as phytoplankton samples from a tropical reservoir with a resident time less than 10 days. Our results showed that 131 phytoplankton species and 138 periphytic diatoms were detected; the variation of phytoplankton community was mainly reflected by the dominant species with a strong response to the environmental variables at a time scale, whereas the variation of periphytic diatom community was noted in both the species composition and the dominant species, with a strong response at spatial-temporal scales. The multivariate regression analysis and redundancy analysis showed that environmental factors have higher explanations for the variance of the periphytic diatom community (R2 = 0.27). Temperature was the key explanatory variable for phytoplankton, planktonic diatoms and periphytic diatoms (P < 0.01). However, dissolved oxygen and nitrate were also detected as significant explanatory factors associated with periphytic diatom community (P < 0.01). Thus, the periphytic diatoms were concluded to be more sensitive to environmental change and were associated with more environmental variables than phytoplankton. Periphytic diatoms appear to provide more ecological information than phytoplankton for riverine reservoirs. © 2018 Science Press. All rights reserved.  相似文献   

4.
In two articles, we present ‘coregionalization analysis with a drift’ (CRAD), a method to assess the multi-scale variability of and relationships between ecological variables from a multivariate spatial data set. In phase I of CRAD (the first article), a deterministic drift component representing the large-scale pattern and a random component modeled as a second-order stationary process are estimated for each variable separately. In phase II (this article), a linear model of coregionalization (LMC) is fitted by estimated generalized least squares to the direct and cross experimental variograms of residuals (i.e., after the removal of estimated drifts). Structural correlations and coefficients of determination at smaller scales are then computed from the estimated coregionalization matrices, while the estimated drifts are used to calculate pseudo coefficients at large scale. The performance of five procedures in estimating correlations and coefficients of determination was compared using a Monte Carlo study. In four CRAD procedures, drift estimation was based on local polynomials of order 0, 1, 2 (L0, L1, L2) or a global polynomial with forward selection of the basis functions; the fifth procedure was coregionalization analysis (CRA), in which large-scale patterns were modeled as a supplemental component in the LMC. In bivariate and multivariate analyses, the uncertainty in the estimation of correlations and coefficients of determination could be related to the interference between spatial components within a bounded sampling domain. In the bivariate case, most procedures provided acceptable estimates of correlations. In regionalized redundancy analysis, uncertainty was highest for CRA, while L1 provided the best results overall. In a forest ecology example, the identification of scale-specific correlations between plant species diversity and soil and topographical variables illustrated the potential of CRAD to provide unique insight into the functioning of complex ecosystems.  相似文献   

5.
《Ecological modelling》2007,200(1-2):1-19
Given the importance of knowledge of species distribution for conservation and climate change management, continuous and progressive evaluation of the statistical models predicting species distributions is necessary. Current models are evaluated in terms of ecological theory used, the data model accepted and the statistical methods applied. Focus is restricted to Generalised Linear Models (GLM) and Generalised Additive Models (GAM). Certain currently unused regression methods are reviewed for their possible application to species modelling.A review of recent papers suggests that ecological theory is rarely explicitly considered. Current theory and results support species responses to environmental variables to be unimodal and often skewed though process-based theory is often lacking. Many studies fail to test for unimodal or skewed responses and straight-line relationships are often fitted without justification.Data resolution (size of sampling unit) determines the nature of the environmental niche models that can be fitted. A synthesis of differing ecophysiological ideas and the use of biophysical processes models could improve the selection of predictor variables. A better conceptual framework is needed for selecting variables.Comparison of statistical methods is difficult. Predictive success is insufficient and a test of ecological realism is also needed. Evaluation of methods needs artificial data, as there is no knowledge about the true relationships between variables for field data. However, use of artificial data is limited by lack of comprehensive theory.Three potentially new methods are reviewed. Quantile regression (QR) has potential and a strong theoretical justification in Liebig's law of the minimum. Structural equation modelling (SEM) has an appealing conceptual framework for testing causality but has problems with curvilinear relationships. Geographically weighted regression (GWR) intended to examine spatial non-stationarity of ecological processes requires further evaluation before being used.Synthesis and applications: explicit theory needs to be incorporated into species response models used in conservation. For example, testing for unimodal skewed responses should be a routine procedure. Clear statements of the ecological theory used, the nature of the data model and sufficient details of the statistical method are needed for current models to be evaluated. New statistical methods need to be evaluated for compatibility with ecological theory before use in applied ecology. Some recent work with artificial data suggests the combination of ecological knowledge and statistical skill is more important than the precise statistical method used. The potential exists for a synthesis of current species modelling approaches based on their differing ecological insights not their methodology.  相似文献   

6.
Statistical packages such as edgeR and DESeq are intended to detect genes that are relevant to phenotypic traits and diseases. A few studies have also modeled the relationships between gene expressions and traits. In the presence of multicollinearity and outliers, which are unavoidable in genetic data, the robust ridge regression estimator can be applied with the trait value as the response variable and the gene expressions as explanatory variables. In some simulation scenarios, the robust ridge estimator is resistant to outliers and less susceptible to multicollinearity than the ordinary least-squares (OLS) estimator. This study investigated the reliability of the robust ridge estimator, in a scenario where the explanatory variables have tail-dependence and negative binomial distributions, by comparing its performance to that of OLS using vine copula to model the tail-dependence among gene expressions. The robust ridge estimator and OLS were both applied to an ecological dataset. First, statistical analysis was used to compare RNA sequencing data between two treatments; then, 15 differentially expressed genes were selected. Next, the regression parameter estimates of robust ridge and OLS for the effects of the 15 contigs (explanatory variables) on trait values (response variables) were compared. Robust ridge regression was found to detect fewer positive and negative slopes than OLS regression. These results indicate that robust ridge regression can be successfully applied for RNA sequencing analysis to estimate the effect of trait-associated genes using real data, and holds great promise as a tool for modeling the association between RNA expression and phenotypic traits.  相似文献   

7.
《Ecological modelling》2005,186(2):143-153
Two kinds of wildlife habitat studies can be distinguished in the literature: hindcasting and forecasting studies. Hindcasting studies aim to emphasize among a large set of habitat variables those that are of interest for the focus species, whereas forecasting studies are intended to predict habitat selection according to a small number of habitat variables for a given area. We provide here a new analytical tool which relies on the concept of ecological niche, the K-select analysis, for hindcasting studies of habitat selection by animals using radio-tracking data. Each habitat variable defines one dimension in the ecological space. For each animal, the difference between the vector of average available habitat conditions and the vector of average used conditions defines the marginality vector. Its size is proportional to the importance of habitat selection, and its direction indicates which variables are selected. By performing a non-centered principal component analysis of the table containing the coordinates of the marginality vectors of each animal (row) on the habitat variables (column), the K-select analysis returns a linear combination of habitat variables for which the average marginality is greatest. It is a synthesis of variables which contributes the most to the habitat selection. As with principal component analysis, the biological significance of the factorial axes is deduced from the loading of variables. An example is provided: habitat selection by wild boar is studied in a Mediterranean habitat using the K-select analysis. The numerous advantages of the analysis (a large number of variables that can be included, individual variability in habitat selection taken into account, a lack of too strict underlying hypotheses) make it a powerful approach in radio-tracking studies designed to identify habitat variables that are selected by animals.  相似文献   

8.
We discuss a method for analyzing data that are positively skewed and contain a substantial proportion of zeros. Such data commonly arise in ecological applications, when the focus is on the abundance of a species. The form of the distribution is then due to the patchy nature of the environment and/or the inherent heterogeneity of the species. The method can be used whenever we wish to model the data as a response variable in terms of one or more explanatory variables. The analysis consists of three stages. The first involves creating two sets of data from the original: one shows whether or not the species is present; the other indicates the logarithm of the abundance when it is present. These are referred to as the presence data and the log-abundance data, respectively. The second stage involves modelling the presence data using logistic regression, and separately modelling the log-abundance data using ordinary regression. Finally, the third stage involves combining the two models in order to estimate the expected abundance for a specific set of values of the explanatory variables. A common approach to analyzing this sort of data is to use a ln (y+c) transformation, where c is some constant (usually one). The method we use here avoids the need for an arbitrary choice of the value of c, and allows the modelling to be carried out in a natural and straightforward manner, using well-known regression techniques. The approach we put forward is not original, having been used in both conservation biology and fisheries. Our objectives in this paper are to (a) promote the application of this approach in a wide range of settings and (b) suggest that parametric bootstrapping be used to provide confidence limits for the estimate of expected abundance.  相似文献   

9.
Comparative use of shelter use by three sympatric species of combtooth blenny (Ecsenius stictus, Glyptoparus delicatulus, and Salarias patzneri) was studied among micro-atolls in the lagoon at Lizard Island (14°42′S, 145°30′E), northern Great Barrier Reef, Australia. Blenny species used different sized holes; however, the average diameter and depth of holes used by the smallest and largest species differed by only 4 and 25 mm, respectively, indicating interspecific differences in suitable refuge can be very subtle. Both hole diameter and depth were positively related to total length of fish, suggesting use of holes relates to interspecific differences in body size. Total abundance of blennies was best explained by a general linear model that included either the number of holes or total habitat area on individual micro-atolls, predictor variables that were positively correlated with each other. However, the relative importance of variables differed among the three species, feeding area being most important for S. patzneri, feeding area and number of holes for E. stictus, and variance in hole diameter being the best explanatory variable for G. delicatulus abundance. The number of blenny species on a micro-atoll was best explained by variance in hole diameter, emphasizing the influence of refuge size variety in fish diversity. It is likely that subtle habitat partitioning, which relates to interspecific differences in body size, contributes to the co-existence of blenny species within the same microhabitat, but presence of holes is unlikely to regulate abundance of these fish.  相似文献   

10.
Tuomisto H  Ruokolainen K 《Ecology》2006,87(11):2697-2708
It has been actively discussed recently what statistical methods are appropriate when one is interested in testing hypotheses about the origin of beta diversity, especially whether one should use the raw-data approach (e.g., canonical analysis such as RDA and CCA) or the distance approach (e.g., Mantel test and multiple regression on distance matrices). Most of the confusion seems to stem from uncertainty as to what is the response variable in the different approaches. Here our aim is to clarify this issue. We also show that, although both the raw-data approach and the distance approach can often be used to address the same ecological hypothesis, they target fundamentally different predictions of those hypotheses. As the two approaches shed light on different aspects of the ecological hypotheses, they should be viewed as complementary rather than alternative ways of analyzing data. However, in some cases only one of the approaches may be appropriate. We argue that S. P. Hubbell's neutral theory can only be tested using the distance approach, because its testable predictions are stated in terms of distances, not in terms of raw data. In all cases, the decision on which method is chosen must be based on which addresses the question at hand, it cannot be based on which provides the highest proportion of explained variance in simulation studies.  相似文献   

11.
We provided a classification tree modeling framework for investigating complex feeding relationships and illustrated the method using stomach contents data for yellowfin tuna (Thunnus albacares) collected by longline fishing gear deployed off eastern Australia between 1992 and 2006. The non-parametric method is both exploratory and predictive, can be applied to varying size datasets and therefore is not restricted to a minimum sample size. The method uses a bootstrap approach to provide standard errors of predicted prey proportions, variable importance measures to highlight important variables and partial dependence plots to explore the relationships between explanatory variables and predicted prey composition. Our results supported previous studies of yellowfin tuna feeding ecology in the region. However, the method provided a number of novel insights. For example, significant differences were noted in the prey of yellowfin tuna sampled north of 20°S in summer where oligotrophic waters dominate. The analysis also identified that sea-surface temperature, latitude and yellowfin size were the most important variables associated with dietary differences. The methodology is appropriate for delineating ecosystem-level trophic dynamics, as it can easily incorporate large datasets comprising multiple predators to explore trophic interactions among members of a community. Broad-scale relationships among explanatory variables (environmental, biological, temporal and spatial) and prey composition elucidated by this method then serve to focus and lend validity to subsequent fine-scale analyses of important parameters using standard diet methods and chemical tracers such as stable isotopes.  相似文献   

12.
Convinced by the predictive quality of artificial neural network (ANN) models in ecology, we have turned our interests to their explanatory capacities. Seven methods which can give the relative contribution and/or the contribution profile of the input factors were compared: (i) the ‘PaD’ (for Partial Derivatives) method consists in a calculation of the partial derivatives of the output according to the input variables; (ii) the ‘Weights’ method is a computation using the connection weights; (iii) the ‘Perturb’ method corresponds to a perturbation of the input variables; (iv) the ‘Profile’ method is a successive variation of one input variable while the others are kept constant at a fixed value; (v) the ‘classical stepwise’ method is an observation of the change in the error value when an adding (forward) or an elimination (backward) step of the input variables is operated; (vi) ‘Improved stepwise a’ uses the same principle as the classical stepwise, but the elimination of the input occurs when the network is trained, the connection weights corresponding to the input variable studied is also eliminated; (vii) ‘Improved stepwise b’ involves the network being trained and fixed step by step, one input variable at its mean value to note the consequences on the error. The data tested in this study concerns the prediction of the density of brown trout spawning redds using habitat characteristics. The PaD method was found to be the most useful as it gave the most complete results, followed by the Profile method that gave the contribution profile of the input variables. The Perturb method allowed a good classification of the input parameters as well as the Weights method that has been simplified but these two methods lack stability. Next came the two improved stepwise methods (a and b) that both gave exactly the same result but the contributions were not sufficiently expressed. Finally, the classical stepwise methods gave the poorest results.  相似文献   

13.
This paper presents the results of a reconsideration of earlier work that finds an association between daily hospital admissions for respiratory distress and daily concentrations of sulphate (lag 1) as well as daily maximum concentrations of ozone (lags 1 and 3). These associations are found even after clustering the data by hospital of admission and accounting for the effects of temperature. We use an adaptation of their generalized estimating equation technique for clustered data, that daily data being for southern Ontario summers from 1983 to 1988. Like them, we adjust for daily maximum temperatures. However, unlike the earlier work returned to ours includes daily average humidity as a potential explanatory variable in our model. Our analysis also differs from theirs in that we cluster the data by census subdivision to reduce the risk of confounding pollutant levels with population size within regions. Moreover, we log-transform the explanatory variables and then high-pass filter the resulting data. We also deviate from the earlier analysis by taking account of measurement error incurred in using surrogate measures of the explanatory variables. To do so we use new methodology designed for our study but of potential value in other applications. That methodology requires a spatial predictive distribution for the unmeasured explanatory variables. Each day about 700 missing measurements for each of these variables can then be imputed over the geographical domain of the study. With these imputations we get a measure of imputation error through the covariance of the predictive distribution. Along with the predictive distribution we require an impact model to link-up with the predictive distribution. We describe that model and show how it uses the imputed measurements of the missing values of the explanatory variables. We also show how through that model, uncertainty about these values is reflected in our analysis and in commensurate uncertainties in the inferences made. Apart from its substantive objectives, our analysis serves to test the new methods with the earlier results serving as a foil. The reassuring qualitative agreement between our findings and the earlier results seems encouraging.  相似文献   

14.
Legendre P  Borcard D  Roberts DW 《Ecology》2012,93(5):1234-1240
When partitioning the variation of univariate or multivariate ecological data with respect to several submodels of spatial eigenfunctions (e.g., Moran's eigenvector maps, MEM) acting as explanatory data, a problem occurs: although the submodels are constructed to be orthogonal to one another, the partitioning based on adjusted R2 statistics produces nonzero values in the intersections between spatial submodels. This phenomenon is described and two solutions are proposed. The first solution is to apportion the intersection fractions proportionally to the variation explained by each submodel. The second solution consists in creating a hierarchy among the spatial submodels, in accordance with hierarchy theory. These solutions lead to new partitioning equations that are described in the Appendix. R functions are provided to carry out partitioning with respect to environmental variables and spatial eigenfunction submodels. This development is important for the correct interpretation of spatial modeling results implying explanatory environmental data as well as submodels of spatial eigenfunctions involving two or more spatial scales.  相似文献   

15.
Summary Variation in reproductive success among 26 communal groups in a sampled population of Plocepasser mahali (White-browed Sparrow Weaver) was studied over a 3-year period in Zambia, Africa. Potential determinants of reproductive success, namely resource variables and group size, were examined and statistically analyzed for their significance in explaining annual variance in reproductive success among these groups. Resource variables included abundance of grass seeds (dry season food) and grasshoppers (wet season food), nest tree quality, and percentage availability of preferred feeding cover. Only the latter two proved appropriate for this analysis. Patterns of utilization did not correlate positively with food abundance, and grasshopper abundance fluctuated too much among the groups in a given year to be treated as a stable variable.From an analysis of multiple correlation coefficients in a stepwise multiple regression model, both group size and ground cover explained independently of each other 20%–30% of the variance in annual production of young surviving 6 months. Explained variance by these two variables also revealed that their relative importance varied considerably between years. Hypotheses are offered to explain the possible causal mechanisms these variables may have in influencing intergroup reproductive success and the possible reasons why vagaries in explained variance were observed. It is suggested that effects of group size and habitat quality may be more important than age-specific effects in modeling population growth and regulation for species like P. mahali.  相似文献   

16.
Two artificial neural networks (ANNs), unsupervised and supervised learning algorithms, were applied to suggest practical approaches for the analysis of ecological data. Four major aquatic insect orders (Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera, i.e. EPTC), and four environmental variables (elevation, stream order, distance from the source, and water temperature) were used to implement the models. The data were collected and measured at 155 sampling sites on streams of the Adour–Garonne drainage basin (South-western France). The modelling procedure was carried out following two steps. First, a self-organizing map (SOM), an unsupervised ANN, was applied to classify sampling sites using EPTC richness. Second, a backpropagation algorithm (BP), a supervised ANN, was applied to predict EPTC richness using a set of four environmental variables. The trained SOM classified sampling sites according to a gradient of EPTC richness, and the groups obtained corresponded to geographic regions of the drainage basin and characteristics of their environmental variables. The SOM showed its convenience to analyze relationships among sampling sites, biological attributes, and environmental variables. After accounting for the relationships in data sets, the BP used to predict the EPTC richness with a set of four environmental variables showed a high accuracy (r=0.91 and r=0.61 for training and test data sets respectively). The prediction of EPTC richness is thus a valuable tool to assess disturbances in given areas: by knowing what the EPTC richness should be, we can determine the degree to which disturbances have altered it. The results suggested that methodologies successively using two different neural networks are helpful to understand ecological data through ordination first, and then to predict target variables.  相似文献   

17.
Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.  相似文献   

18.
Scale is emerging as one of the critical problems in ecology because our perception of most ecological variables and processes depends upon the scale at which the variables are measured. A conclusion obtained at one scale may not be valid at another scale without sufficient knowledge of the scaling effect, which is also a source of misinterpretation for many ecological problems, such as the design of reserves in conservation biology.This paper attempts to study empirically how scaling may affect the spatial patterns of diversity (tree density, richness and Shannon diversity) that we may perceive in tropical forests, using as a test-case a 50 ha forest plot in Malaysia. The effect of scale on measurements of diversity patterns, the occurrence of rare species, the fractal dimension of diversity patterns, the spatial structure and the nearest-neighbour autocorrelation of diversity are addressed. The response of a variable to scale depends on the way it is measured and the way it is distributed in space.We conclude that, in general, the effect of scaling on measures of biological diversity is non-linear; heterogeneity increases with the size of the sampling units, and fine-scale information is lost at a broad scale. Our results should lead to a better understanding of how ecological variables and processes change over scale.  相似文献   

19.
The degree to which spatial patterns influence the dynamics and distribution of populations is a central question in ecology. This question is even more pressing in the context of rapid habitat loss and fragmentation, which threaten global biodiversity. However, the relative influence of habitat loss and landscape fragmentation, the spatial patterning of remaining habitat, remains unclear. If landscape pattern affects population size, managers may be able to design landscapes that mitigate habitat loss. We present the results of a mensurative experiment designed to test four habitat loss vs. fragmentation hypotheses. Unlike previous studies, we measured landscape structure using quantitative, spatially explicit habitat distribution models previously developed for two species: Blackburnian Warbler (Dendroica fusca) and Ovenbird (Seiurus aurocapilla). We used a stratified sampling design that reduced the confounding of habitat amount and fragmentation variables. Occurrence and reoccurrence of both species were strongly influenced by characteristics at scales greater than the individual territory, indicating little support for the random-sample hypothesis. However, the type and spatial extent of landscape influence differed. Both occurrence and reoccurrence of Blackburnian Warblers were influenced by the amount of poor-quality matrix at 300- and 2000-m spatial extents. The occurrence and reoccurrence of Ovenbirds depended on a landscape pattern variable, patch size, but only in cases when patches were isolated. These results support the hypothesis that landscape pattern is important for some species only when the amount of suitable habitat is low. Although theoretical models have predicted such an interaction between landscape fragmentation and composition, to our knowledge this is the first study to report empirical evidence of such nonlinear fragmentation effects. Defining landscapes quantitatively from an organism-based perspective may increase power to detect fragmentation effects, particularly in forest mosaics where boundaries between patches and matrix are ambiguous. Our results indicate that manipulating landscape pattern may reduce negative impacts of habitat loss for Ovenbird, but not Blackburnian Warbler. We emphasize that most variance in the occurrence of both species was explained by local scale or landscape composition variables rather than variables reflecting landscape pattern.  相似文献   

20.
Spatial distribution of nutrient and phytoplankton variables is often illustrated using categorical mapping for each variable. However, the assessment of eutrophication cannot be derived from a single parameter since a synthesis of the environmental variables related to eutrophication is required. These shortcomings are further complicated since it is difficult to discriminate between distinct trophic states along natural environmental gradients. In the present work, a methodological procedure for quantitative assessment of eutrophication at a spatial scale was examined in the Gulf of Saronicos, Greece, based on a thematic map generated from the synthesis of four variables characterising eutrophication. The categorical map of each variable was developed using the Kriging interpolation method and four trophic levels were indicated (eutrophic, upper-mesotrophic, lower-mesotrophic and oligotrophic) based on nutrient and phytoplankton concentration scaling. Multi-criteria choice methods were applied to generate a final categorical map showing the four trophic levels in the area. This synthesis of categorical maps for assessing eutrophication at a spatial scale is proposed as a methodological procedure appropriate for coastal management studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号