首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
采用CFD数值模拟方法,建立隧道火灾模型,研究不同纵向通风风速和火源功率对隧道内火灾临界风速和烟气分布的影响。结果表明:烟流滚退距离受火源功率和通风风速影响,5、30、50 MW火源功率的临界风速分别为2.0、2.2、2.2 m/s;同一火源功率下,拱顶最高温度随着通风风速的增大,呈现出指数函数的下降趋势;同一通风风速下,拱顶最高温度随着火源功率的增大呈现正向线性关系,并且随着通风风速的增大,拱顶最高温度随功率增大的速度逐渐降低;不同火源功率及不同通风风速下,火源上风侧CO浓度均低于安全浓度(体积分数0.002 4%),火源下风侧远高于安全浓度。故若隧道发生火灾,应启动排烟风机并使隧道内的风速高于2.0 m/s,且在火源上风侧开展救援及逃生。  相似文献   

2.
纵向通风隧道内火灾温度场分布规律研究   总被引:4,自引:2,他引:2  
以狮子洋水下特长隧道为工程背景,利用CFD数值模拟软件FDS 4.01,建立隧道实体物理模型,进行火灾数值模拟分析。研究了列车火灾热释放功率为15 MW、不同坡度、不同纵向通风风速下,该类隧道内拱顶附近和2 m高处温度场的纵向分布规律,以及各工况下拱顶的最高温度,并分析其对隧道结构防火和人员疏散救援的影响。结果表明:随隧道坡度的增大,在同一通风速率下的烟气回流长度逐渐减小,但随着风速的加大,坡度对烟气回流的影响逐渐减弱;随着通风风速的增大,火区附近的温度下降,而沿程温度上升,纵向通风速率越大,拱顶温度越低。  相似文献   

3.
采用火灾模型试验的研究方式,在高海拔特长铁路隧道——关角隧道(32.645 km)的斜井内进行火灾燃烧的全尺寸模型试验,测得不同火灾规模条件下隧道内温度和烟气分布,通过分析试验结果,得到高海拔隧道火灾的燃烧特性。研究结果表明:隧道拱顶处温度高于隧道中心线附近温度;火源附近温度最高,隧道内各位置温度随着距火源点距离增加而降低;纵向风速对隧道内烟气分布有重要影响,火源下游温度高于上游温度。结合试验的分析结果,就高海拔隧道火灾防灾救援设计提出建议。  相似文献   

4.
临界风速是隧道进行通风排烟设计的重要参数,为了研究火源功率、隧道阻塞比对临界风速变化规律的影响,采用PyroSim火灾动力学模拟工具与经验公式对比分析的方式。建立隧道缩尺寸模型,并对模型网格尺寸划分进行可靠性校验,发现网格尺寸为火源特征直径的十分之一时最可靠。结果表明:模拟临界风速与理论临界风速相吻合,临界风速随火源功率的增加而增大,当火源功率大于某范围时,临界风速开始趋于稳定;临界风速受到列车对隧道阻塞作用的影响,临界风速随着隧道横截面阻塞比的增加而呈线性减小,在阻塞比达到40%时,临界风速趋于稳定。  相似文献   

5.
阻塞效应下地铁隧道烟气蔓延特性研究对隧道火灾烟气控制方案的制定有重要影响。采用火灾动力学软件FDS6. 4,对阻塞效应下地铁区间隧道内的拱顶下方最高温度、纵向温度衰减和烟气回流规律进行了数值模拟研究。结果表明,已有隧道拱顶最高温度预测模型并不适用于高阻塞比条件下隧道拱顶最高温度的预测,提出了隧道拱顶最高温度依赖于火源热释放速率、纵向通风条件及阻塞比时的最高温度预测模型。在火源下游温度衰减系数范围为[0. 197 1,0. 223 2];在火源上游,纵向通风速度越大温度衰减越快,且温度衰减系数与无量纲纵向通风速度呈线性增长关系。  相似文献   

6.
纵向通风下坡度隧道火灾烟气特性数值模拟研究   总被引:1,自引:0,他引:1  
为探讨纵向通风情况下坡度隧道火灾烟气的温度分布、回流长度等特性参数,运用火灾动力学模拟软件FDS建立一个长为500 m的公路隧道模型,对不同坡度、不同纵向通风速率的20组火灾工况进行模拟研究,通过分析各工况的模拟结果,并结合前人在隧道火灾烟气特性研究方面的成果,得到火灾情况下隧道内烟气的纵向温度分布规律、隧道拱顶温度变化规律、温度偏移及烟气回流长度变化规律等。  相似文献   

7.
南京长江隧道火灾数值模拟   总被引:2,自引:1,他引:1  
以南京长江隧道为研究背景,运用火灾动力学模拟软件PYROSIM建立实体物理模型,并将空间划分为0.1 ×0.1 ×0.1m3的网格,对南京长江隧道火灾过程中的纵向通风进行模拟计算.定量分析了不同通风速率条件下火灾及烟气蔓延的规律,并得到隧道拱顶附近温度和烟气分布状况.模拟结果显示较小风速下烟气会产生回流,但随着风速增大烟气扩散速率随之加快,通过对3种不同风速的分析比较,选择3.0m/s纵向通风作为临界风速.进一步结合南京长江隧道现有的消防设施及应急救援系统,分析该临界风速下烟气温度对隧道结构和毒害气体对人员疏散救援的影响.结果显示此临界风速下隧道结构安全,且在疏散及时、救援有效的基础上,基本能保证人员疏散安全.  相似文献   

8.
隧道结构对火灾具有一定的影响,为了得到大曲率、变坡度复杂结构隧道火灾的烟气特性,依托深圳市某长大公路隧道建设工程,建立隧道模型,利用Star-CD/CCM^+数值模拟软件的烟火向导模块,对不同通风速度下的重型货车火灾进行了模拟研究,分析了不同通风速度下隧道内的纵向温度分布规律。结果表明:火灾热释放速率为30 M W时,无通风条件下,火灾烟气的最高温度位于隧道顶棚下方20 cm处,火源正上方的温度最大达到1190℃,隧道坡度的存在使得火源上游烟气逐渐向下游扩散,下游烟气温度在300 s后保持在500℃以上,该高温会对隧道结构造成一定的损伤;控制烟气逆流的临界风速为4.0 m/s,大于由Wu&Baker经验公式得到的值.表明隧道曲率对流场运动有一定的抑制作用;在该临界风速的作用下,烟气向火源下游扩散,扩散速度为6 m/S,烟气的最高温度降低至550℃,且位置向火源下游偏移6 m。建议火源下游行驶车辆的疏散逃生速度大于6m/s。  相似文献   

9.
为探明螺旋隧道火灾特性,防止人员高温伤害,基于Froude准则,搭建比例1∶67的小尺寸螺旋隧道实验模型,采用模型实验方法研究不同坡度和不同风速下螺旋隧道火灾温度分布规律及烟气蔓延特性。研究结果表明:低坡度条件下,螺旋隧道内高温区以火源为中点呈对称分布状态;随着坡度的增加,隧道内高温区逐渐向下游延伸,火源处拱顶下方温度呈现先增大后降低再升高的变化规律;无论是自然风还是机械纵向通风,新鲜冷空气的吹入对隧道温度的降低起到主导作用,且风速越大,温降幅度越大;随着隧道坡度和自然风速的增加,火羽流由竖直狭长型转变为燃烧不稳定的大截面火焰,同时坡度增加抑制了火灾烟气逆流,促进了烟气向火源下游的蔓延速度,大大提高了排烟的有效性,减少人员伤害。  相似文献   

10.
陈长坤  康恒 《火灾科学》2013,22(1):24-30
针对重载铁路隧道内重载列车运载大量可燃物贯穿整条隧道的情况,建立了500m双线重载铁路隧道模型,利用大涡模拟技术,采用数值模拟的方法探讨了可燃物极大丰富条件下重载铁路隧道内,不同初始火源功率、起火位置下可燃物(红松木)火灾蔓延规律,进而分析了重载列车起火后隧道内火灾沿纵向、横向的温度分布特点、变化规律及后果影响。结果表明:重载铁路隧道内重载列车一旦发生火灾,不同起火位置对火灾向周围的蔓延速度有着明显的影响,而当火灾发生大面积蔓延时,由于隧道内通风量受限,将最终形成两侧隧道口附近燃烧剧烈,而中部较长区域燃烧受到显著抑制的特点。这也导致了隧道内拱顶附近处的最高温度位置由初始火源正上方,沿纵向逐渐向隧道洞口移动,并最终稳定在两侧隧道口附近,同时隧道中部温度也发生大幅度降低,这种温度分布特征对隧道衬砌结构损伤及破坏将产生重要影响。  相似文献   

11.
隧道火灾拱顶附近烟气最高温度的研究   总被引:3,自引:1,他引:3  
为了研究顶部开口的城市隧道在采用自然通风模式下的火灾特性,在已建成的隧道中设计并实施了全尺寸火灾试验,得到了隧道火灾自然通风模式下的拱顶附近烟气最高温度纵向变化数据。通过实验数据与理论预测结果对比的方法验证了H.Kurioka等人建立的隧道火羽流模型及其计算公式的可靠性,为市政公路隧道建设提供了科学依据,为隧道火灾的研究及其消防工作提供理论指导和有益借鉴。  相似文献   

12.
为探究分岔隧道烟气流动特性,采用CFD数值仿真技术,选取3个火源位置、5个热释放速率,模拟分析顶棚最大温升、主隧道及岔道内顶棚下方温度纵向衰减规律。结果表明:火源位置对顶棚下火源正上方最大温度影响较小,最大温差约为34 ℃,但对火源附近温度影响较大,其中距火源0.5 m处最大温差约为110 ℃;通过对比Hu等和Gong等的预测模型在岔道内顶棚下温度纵向衰减上的拟合曲线可知,Gong等的模型准确性更高;主隧道内上、下游顶棚下温度纵向衰减呈现出不同程度的“反超现象”,且随火源位置逐渐移向岔道内时,“反超现象”逐渐滞后。  相似文献   

13.
选取某城市L型综合管廊电缆舱为研究对象,采用FDS数值模拟软件研究了不同火源位置对L型管廊电缆火灾温度纵向衰减规律、烟气浓度分布规律及烟气危害性的影响。研究结果表明,L型廊道构型影响了不同火源位置的管廊电缆火灾最高温度纵向衰减的连续性,基于热边界层理论提出了适用于L型管廊的二维平面最高温度纵向衰减模型。基于峰宽时间计算了L型管廊火灾的烟气总危害性参数,不同火源位置的烟气危害性总在靠近管廊节点位置处最低。这些结果可对综合管廊的消防设计与火灾防控提供参考。  相似文献   

14.
研究了燃烧风洞内不同纵向风速、不同火源功率条件下,隧道近火源区顶部温度沿纵向分布情况。结果表明,纵向风对不同尺寸火源条件下的顶部温度的影响呈不同特征。对较小尺寸火源,隧道顶部温升随风速增加而减小至稳定值;而对较大尺寸火源,顶部温升随风速增加先增加后减小。对于矩形火源,当纵向风较小(0.5~1.5m/s)时,长边平行于纵向风时顶部最高温升大于长边垂直于纵向风的情况;而当纵向风较大(≥2 m/s)时,两种油盘放置方式的顶部最高温升一致。纵向风作用下,顶部最高温升位置向下游呈现"两次移动"特征,即随着纵向风速增加该位置先向下游移动,当风速达到某一值时,隧道拱顶的加热机制由对流和辐射共同主控转变为辐射单独主控,最高温升位置突变回到上游后再次逐渐向下游移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号