首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In late May, 2007, a drinking water crisis took place in Wuxi, Jiangsu Province, China, following a massive bloom of the toxin producing cyanobacteria Microcystis spp. in Lake Taihu, China’s third largest freshwater lake. Taihu was the city’s sole water supply, leaving approximately two million people without drinking water for at least a week. This cyanobacterial bloom event began two months earlier than previously documented for Microcystis blooms in Taihu. This was attributed to an unusually warm spring. The prevailing wind direction during this period caused the bloom to accumulate at the shoreline near the intake of the water plant. Water was diverted from the nearby Yangtze River in an effort to flush the lake of the bloom. However, this management action was counterproductive, because it produced a current which transported the bloom into the intake, exacerbating the drinking water contamination problem. The severity of this microcystin toxin containing bloom and the ensuing drinking water crisis were attributable to excessive nutrient enrichment; however, a multi-annual warming trend extended the bloom period and amplified its severity, and this was made worse by unanticipated negative impacts of water management. Long-term management must therefore consider both the human and climatic factors controlling these blooms and their impacts on water supply in this and other large lakes threatened by accelerating eutrophication.  相似文献   

2.
Roelke, Daniel L., Leslie Schwierzke, Bryan W. Brooks, James P. Grover, Reagan M. Errera, Theodore W. Valenti, Jr., and James L. Pinckney, 2010. Factors Influencing Prymnesium parvum Population Dynamics During Bloom Initiation: Results from In-Lake Mesocosm Experiments. Journal of the American Water Resources Association (JAWRA) 46(1):76-91. DOI: 10.1111/j.1752-1688.2009.00392.x Abstract: The alga Prymnesium parvum forms large fish-killing blooms in many Texas lakes. In some of these lakes, however, P. parvum occurs but does not develop blooms. In this study, we investigated factors that may influence bloom initiation by conducting a series of in-lake experiments involving mixing of waters from Lake Whitney, which has a history of P. parvum blooms, with waters from Lake Waco where no blooms have occurred. In all experiments, the addition of Lake Waco waters resulted in a poorer performance of P. parvum. Various experimental treatments and field data show that differences in grazing, pathogens, nutrients, and salts between the two lakes were not likely factors that contributed to this observation. Industrial and agricultural contaminants, allelochemicals and algicidal chemicals were not measured as a part of this research. However, anthropogenic contaminants other than nutrients were not observed at levels exceeding water quality standards in Lake Waco in recent years. On the other hand, nuisance cyanobacteria are common in Lake Waco, where Microcystis sp. and Anabaena sp. were abundant during the initiation of our experiments, both taxa are known to produce chemicals with allelopathic properties. In addition, the emergent field of algal-heterotrophic bacteria interactions suggests that chemicals produced by heterotrophic bacteria should not be overlooked. Further research focusing on the chemical interactions between cyanobacteria and P. parvum, as well as the potential role of algicidal bacteria, in the initiation of P. parvum blooms is necessary, as it may be important to the management of these blooms.  相似文献   

3.
A series of statistical analyses were used to identify temporal and spatial patterns in the phytoplankton and nutrient dynamics of Lake Washington, an mesotrophic lake in Washington State (USA). These analyses were based on fortnightly or monthly samples of water temperature, Secchi transparency, ammonium (NH4), nitrate (NO3), inorganic phosphorus (IP), total nitrogen (TN), total phosphorus (TP), dissolved oxygen (DO), pH and chlorophyll a (chl a) collected during 1995–2000 from 12 stations. Lake Washington has a very consistent and pronounced annual spring diatom bloom which occurs from March to May. During this bloom, epilimnetic chl a concentrations peak on average at 10 μg/L, which is 3 times higher than chl a concentrations typically seen during summer stratified conditions. The spring bloom on average comprised 62% diatoms, 21% chlorophytes and 8% cyanobacteria. During summer stratification, diatoms comprised 26% of the phytoplankton community, chlorophytes 37% and cyanobacteria 25%. Cryptophytes comprised approximately 8% of the community throughout the year. Overall, 6 phytoplankton genera (i.e., Aulacoseira, Fragilaria, Cryptomonas, Asterionella, Stephanodiscus, and Ankistrodesmus) cumulatively accounted for over 50% of the community. These analyses also suggest that the phytoplankton community strongly influences the seasonality of NO3, IP, DO, pH and water clarity. According to a MANOVA, seasonal fluctuations explained 40% of the total variability for the major parameters, spatial heterogeneity explained 10% of variability, and the seasonal-spatial interaction explained 10% of variability. Distinctive patterns were identified between offshore and inshore sampling stations. The results of our analyses also suggest that spatial variability was substantial, but much smaller than temporal variability.  相似文献   

4.
Hagström, Johannes A., Mario R. Sengco, and Tracy A. Villareal, 2010. Potential Methods for Managing Prymnesium parvum Blooms and Toxicity, With Emphasis on Clay and Barley Straw: A Review. Journal of the American Water Resources Association (JAWRA) 46(1):187-198. DOI: 10.1111/j.1752-1688.2009.00402.x Abstract: Harmful algal bloom (HAB) control and mitigation is a complex problem in ecosystem management. Phytoplankton play an important role in aquatic ecosystems as primary producers and food sources for many commercially important shellfish and there are limited options for targeting just a single species within the community. Chemical treatments (e.g., algaecides), rotting barley straw, nitrogen and phosphorus manipulation, and clay and/or flocculants are but a few techniques tested or used to reduce fish kills or shellfish contamination during a HAB event. Prymnesium parvum control has focused on the use of chemicals, nutrient manipulation, and clay flocculation. However, many HAB control methods have been rejected due to their effects on ecosystems, high costs, or limited effects on target organisms. For example, rotting barley straw (Hordeum vulgare) is considered to be an environmentally friendly alternative, but has been found to have very different results on the phytoplankton community depending on the dominating taxa and is ineffective against P. parvum and dinoflagellate blooms. Clay flocculation is a useful control/mitigation technique during fish kills in marine aquaculture sites in South Korea and can be effective in freshwater if the correct combination of clay and flocculent is used. Toxins produced by P. parvum and Karenia brevis also bind to phosphatic clay, thereby removing and/or neutralizing the toxins, but there is concern that the clay will have a negative effect on sessile organisms. Some shellfish suffer high mortalities and significant impacts on somatic and reproductive tissue growth at high clay loads; however, benthic communities appear to be unchanged after five years of clay treatment in South Korea. There are likely site-specific and ecosystem-specific characteristics that make generalizations about control options difficult and require careful assessment of options at each location.  相似文献   

5.
Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km−2 a−1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002–2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a−1 in 2007 including 4,642 t a−1 of wet deposition, lower than the values obtained in 2002–2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period of favorable algal growth.  相似文献   

6.
Schwierzke, Leslie, Daniel L. Roelke, Bryan W. Brooks, James P. Grover, Theodore W. Valenti, Jr., Mieke Lahousse, Carrie J. Miller, and James L. Pinckney, 2010. Prymnesium parvum Population Dynamics During Bloom Development: A Role Assessment of Grazers and Virus. Journal of the American Water Resources Association (JAWRA) 46(1):63-75. DOI: 10.1111/j.1752-1688.2009.00391.x Abstract: The toxic haptophyte Prymnesium parvum is a harmful alga known to cause fish-killing blooms that occur worldwide. In Texas (United States), P. parvum blooms occur in inland brackish water bodies and have increased in frequency and magnitude in recent years. In this study we conducted three consecutive field experiments (Lake Whitney) to investigate the influence of zooplankton and viruses on P. parvum bloom dynamics during the time of year when blooms are still typically active in Texas (early spring). A localized P. parvum bloom developed during our study that involved increasing levels of toxicity (based on Pimephales promelas and Daphnia magna bioassays). Only in our last experiment, during later stages of bloom development and under highly toxic conditions, did the presence of grazers show a statistically significant, negative effect on P. parvum population dynamics. During this experiment, a rotifer-dominated zooplankton community emerged, composed mostly of Notholca laurentiae, suggesting that this species was less sensitive than other grazers to toxins produced by P. parvum. Microzooplankton may have also been important at this time. Similarly, only our final experiment demonstrated a statistically significant, negative effect of viruses on P. parvum. This exploratory study, resulting in observed impacts on P. parvum populations by both grazers and virus, enhances our understanding of P. parvum ecology and highlights direction for future studies on resistance of zooplankton to prymnesin toxins and algal-virus interactions.  相似文献   

7.
Barkoh, Aaron, Dennis G. Smith, and Gregory M. Southard, 2010. Prymnesium parvum Control Treatments for Fish Hatcheries. Journal of the American Water Resources Association (JAWRA) 46(1):161-169. DOI: 10.1111/j.1752-1688.2009.00400.x Abstract: In 2001, the ichthyotoxic microalga Prymnesium parvum caused massive fish kills and adversely affected fish production at the Texas Parks and Wildlife Department (TPWD) Dundee State Fish Hatchery. Since then, we have investigated several P. parvum bloom and ichthyotoxicity control treatments to develop management strategies that allow fish production and prevent the spread of the alga into unaffected hatcheries and impoundments. Current control successes include treatments for ponds, water supply, and a hazard analysis and critical control point program. For pond treatment, ammonium sulfate (as 0.14-0.25 mg/l un-ionized ammonia nitrogen for temperatures above 15°C), copper sulfate (2 mg/l), Cutrine®-Plus (0.2-0.4 mg/l as copper), or potassium permanganate (3 mg/l above the potassium permanganate demand) controls P. parvum blooms. Copper sulfate at 1 mg/l controls P. parvum but is unable to eliminate ichthyotoxicity whereas potassium permanganate at 2 mg/l above the potassium permanganate demand controls ichthyotoxicity. For water treatment, ultraviolet (UV) light at 193-220 mJ/cm2 doses or ozone at 0.4-1.2 mg/l for 6 min destroy P. parvum cells and reduce or eliminate ichthyotoxicity. A combination UV and ozone treatment appears to provide the best results; however, successful treatments depend on dosage relative to cell density and toxin concentration. To prevent the spread of the alga, hatchery fish delivery units and equipment are cleaned with household bleach (10% solution for 15 minutes) or hydrogen peroxide (62.5-12,500 mg/l for 0.25-24 hours). These treatments are tailored to water quality conditions and the fish species cultured at affected TPWD hatcheries. We recommend that other users test these treatments before applying them to ponds or other impoundments containing fish or other aquatic life.  相似文献   

8.
ABSTRACT: Algal blooms, defined as chlorophyll α concentrations greater than 40 μg l?1, are common in Lake Okeechobee, Florida. Using logistic regression techniques, we have developed equations that relate limnological variables to algal bloom occurrence in four distinct open-water regions of this large shallow lake: central pelagic, northwest, southwest, and a transition region between the western and pelagic regions. Wind velocity and total phosphorus, which are closely related to resuspended material in the central region, are negatively related to algal bloom occurrence there. In the transition region, algal bloom occurrence is positively related to total nitrogen and wind velocity. Algal bloom occurrence is strongly and positively related to total nitrogen and total phosphorus concentrations in the western regions. The logistic regression model predicts an algal bloom probability greater than 95 percent in the northwest region when total phosphorus exceeds 0.10 mg l?1 and total nitrogen exceeds 2.5 mg l?1. In the southwest region the model predicts algal bloom probability of 100 percent when total phosphorus exceeds 0.10 mg l?1 and total nitrogen exceeds 2.8 mg l?1. Given 1994 mean total phosphorus concentrations of 0.05 and 0.04 mg l?1 in the northwest and southwest regions, respectively, total nitrogen would have to remain below 1.32 and 1.43 mg l?1, respectively, to keep the algal bloom probability below 10 percent. Because the lake is heterogenous, such nutrient standards should be considered on an in-lake regional basis for Lake Okeechobee.  相似文献   

9.
In this work, time series neural networks were used to predict the occurrence of toxic cyanobacterial blooms in Crestuma Reservoir, which is an important potable water supply for the Porto region, located in the north of Portugal. These models can potentially be used to provide water treatment plant operators with an early warning for developing cyanobacteria blooms. Physical, chemical, and biological parameters were collected at Crestuma Reservoir from 1999 to 2002. The data set was then divided into three independent time series, each with a fortnightly periodicity. One training series was used to “teach” the neural networks to predict results. Another series was used to verify the results, and to avoid over-fitting of the data. An additional independently collected data series was then used to test the efficacy of the model for predicting the abundance of cyanobacteria. All of the models tested in this study incorporated a prediction time (look-ahead parameter) equal to the sampling interval (two weeks). Various lag periods, from 2 to 52 weeks, were also investigated. The best model produced in this study provided the following correlations between the target and forecast values in the training, verification, and validation series: 1.000 (P = 0.000), 0.802 (P = 0.000), and 0.773 (P = 0.001), respectively. By applying this model to the three-year data set, we were able to predict fluctuations in cyanobacteria abundance in the Crestuma Reservoir, with a high level of precision. By incorporating a lag-period of eight weeks, we were able to detect secondary fluctuations in cyanobacterial abundance over the annual cycle.  相似文献   

10.
Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.  相似文献   

11.
Increased interest in water quality in coastal and marine areas stemming from the Water Framework Directive and the Marine Strategy Framework Directive has led to important questions in relation to policies that address nutrient loadings. This paper presents the results from a choice experiment study to assess the recreational damage associated with algal blooms caused by nutrients flows into Varna Bay, Bulgaria. Varna Bay is an important beach destination on the Black Sea coast of Bulgaria. Algal bloom events have been experienced frequently in the area. A choice experiment questionnaire was developed and applied in the Varna Bay area to assess the extent to which the quantity of algal blooms and the duration of the bloom affect recreational activities. The amount of bloom was found to be important, as respondents were on average willing to pay a one off tax of 18.97 Leva (€9.73) for a program that provides beaches free from algal blooms.  相似文献   

12.
湖泊蓝藻水华数字化预警系统构建探讨   总被引:1,自引:0,他引:1  
构造湖泊蓝藻水华数字化预警系统是我国湖泊水环境管理的一个重要方向。本文探讨了构建湖泊蓝藻水华数字化预警系统的若干技术问题,包括:(1)数字化预警数学模式。提出需重视流域尺度的氮磷营养物和沉积动态输入以及营养物、沉积物对水生态结构动力过程的影响,建立非点源模型和湖泊生态结构动力学模型相耦合的预警数学模型模式;在此基础上提出了各种数学模型的可借鉴模式。(2)湖泊蓝藻水华预警监测技术。总结了常规水质监测的数据筛选方法,探讨了遥感技术和实时传输监测技术在水质监测中的应用模式,提出了实时监测和遥感监测需解决的技术难题和实现方法。(3)湖泊蓝藻数字化预警系统的设计。提出了数学模型系统、水质监控系统的网络化集成设计模式,提出了基于网络化地理信息系统的计算机应用软件实现模式。  相似文献   

13.
Johnsen, Torbjørn M., Wenche Eikrem, Christine D. Olseng, Knut E. Tollefsen, and Vilhelm Bjerknes, 2010. Prymnesium parvum: The Norwegian Experience. Journal of the American Water Resources Association (JAWRA) 46(1):6-13. DOI: 10.1111/j.1752-1688.2009.00386.x Abstract: In Norwegian waters, Prymnesium parvum has been reported from Oslofjorden in the south to Spitzbergen in the north. However, blooms of P. parvum have only been reported from the Sandsfjorden system in Ryfylke, Western Norway where the salinity of the permanent brackish layer (2-5 m) typically is in the range of 4-7 psu during the summer months. The first bloom on record occurred in 1989, and it killed 750 metric tons of caged salmon and trout which was a significant economic loss to the fish farming industry. Toxic blooms occurred as well in subsequent years and the number of fish farms in the area decreased considerably as did the occurrence of P. parvum. In 2005, fish farming was reintroduced to the area and again, in 2007 a toxic bloom of P. parvum killed 135 metric tons of caged fish. The Norwegian Institute for Water Research has, in collaboration with “Erfjord Stamfisk” fish farm, set up a monitoring program that includes light microscopy cell counts of Prymnesium, water quality measurements, and observation of the caged fish. A submergible fish net was mounted over the fish pens and during the toxic outbreak of P. parvum in July-August 2007, which was as previous years confined to the upper brackish water layer, the fish nets were lowered to 10 m depths below the surface and fish feeding was temporarily stopped. Despite substantial weight loss, the fish survived the toxic bloom and the economic loss was minimal. Monitoring of P. parvum bloom dynamics in 2007 revealed that populations were initially dominated by the nonmotile forms which were gradually replaced by the flagellated forms. Toxicity was observed when the flagellated cells dominated populations in the summer. Chrysochromulina, solitary small Chaetoceros species, and small centric diatoms co-existed with P. parvum during the monitoring period (June-October).  相似文献   

14.
无锡太湖水源地藻类爆发应急管理与处置体系研究   总被引:1,自引:0,他引:1  
本文通过对太湖蓝藻爆发事件的分析,揭示了我国水源地藻类爆发应急管理和处置体系存在预警、预案机制不完善,监测机制与预警机制脱节,公众信息系统不健全、公开透明程度欠缺等不足,并设计出一套水源地藻类爆发应急处理体系,包括监测检测、应急处理、长效治理和管理体系,以应对该类事件的再次发生。  相似文献   

15.
基于MODIS数据的太湖蓝藻水华时空分布规律研究   总被引:1,自引:0,他引:1  
黄君  宋挺  庄严  吴蔚 《四川环境》2014,33(5):27-33
利用EOS/MODIS遥感影像数据,采用蓝藻水华分级评价方法和蓝藻水华发生频率分析方法,对2010年~2013年不同级别太湖蓝藻水华时空分布规律进行分析和研究,以期为太湖蓝藻水华预警、监控、治理工作提供技术支持.结果表明:(1) 2010年~2013年,全太湖共发生蓝藻水华354次,其中小型水华发生次数最多,蓝藻水华级别越高,发生次数越少.(2)年际变化上,蓝藻水华发生次数总体趋于平稳,蓝藻水华发生呈现“小型多发、中大型少发、重大型偶发”趋势,蓝藻水华发生规模呈显著缩小趋势.(3)月际变化上,蓝藻水华主要发生在8 ~10月,8月和9月尤其是太湖蓝藻水华的高发月份.发生规模上,4~6月蓝藻水华发生规模较小,7月开始规模逐步扩大,到9月达到顶峰,10月规模有所缩小.(4)空间变化上,太湖西部沿岸是太湖蓝藻水华首次爆发最频繁的水域.从空间分布频率来看,太湖西部沿岸区尤其宜兴沿岸是蓝藻水华爆发频率最高的水域.  相似文献   

16.
2009年初以来,在福建省九龙江北溪的支流和干流连续发生了拟多甲藻(Peridiniopsis penardii)水华。经检测,拟多甲藻水华没有明显的生物毒性,但其所形成的深褐色水色和轻微藻腥味对该流域的龙岩、漳州和厦门三城市的生产和生活是造成了一定的影响。研究结果表明,在甲藻水华的防治与应急处置过程中,必须进一步加强组织体系建设,明确各职能部门职责,并根据不同水域的实际情况和季节变化,采取相应的物理、化学和生物方法予以防治和应急处置。  相似文献   

17.
During 2010–2011, a study was conducted in Sequoia and Kings Canyon National Parks (SEKI) to evaluate the influence of pack animals (stock) and backpackers on water quality in wilderness lakes and streams. The study had three main components: (1) a synoptic survey of water quality in wilderness areas of the parks, (2) paired water quality sampling above and below several areas with differing types and amounts of visitor use, and (3) intensive monitoring at six sites to document temporal variations in water quality. Data from the synoptic water quality survey indicated that wilderness lakes and streams are dilute and have low nutrient and Escherichia coli concentrations. The synoptic survey sites were categorized as minimal use, backpacker-use, or mixed use (stock and backpackers), depending on the most prevalent type of use upstream from the sampling locations. Sites with mixed use tended to have higher concentrations of most constituents (including E. coli) than those categorized as minimal-use (P ≤ 0.05); concentrations at backpacker-use sites were intermediate. Data from paired-site sampling indicated that E. coli, total coliform, and particulate phosphorus concentrations were greater in streams downstream from mixed-use areas than upstream from those areas (P ≤ 0.05). Paired-site data also indicated few statistically significant differences in nutrient, E. coli, or total coliform concentrations in streams upstream and downstream from backpacker-use areas. The intensive-monitoring data indicated that nutrient and E. coli concentrations normally were low, except during storms, when notable increases in concentrations of E. coli, nutrients, dissolved organic carbon, and turbidity occurred. In summary, results from this study indicate that water quality in SEKI wilderness generally is good, except during storms; and visitor use appears to have a small, but statistically significant influence on stream water quality.  相似文献   

18.
Bowers, Holly A., Andreas Brutemark, Wanderson F. Carvalho, and Edna Granéli, 2010. Combining Flow Cytometry and Real-Time PCR Methodology to Demonstrate Consumption by Prymnesium parvum. Journal of the American Water Resources Association (JAWRA) 46(1):133-143. DOI: 10.1111/j.1752-1688.2009.00397.x Abstract: Harmful algal bloom species can persist in the environment, impacting aquatic life and human health. One of the mechanisms by which some harmful algal bloom species are able to persist is by consumption of organic particles. Methods to demonstrate and measure consumption can yield insight into how populations thrive. Here, we combine flow cytometry and real-time PCR to demonstrate consumption of a cryptophyte species (Rhodomonas sp.) by a toxic mixotrophic haptophyte (Prymnesium parvum). Using flow cytometry, the feeding frequency of a population of P. parvum cells was calculated using the phycoerythrin (PE) fluorescence signal from Rhodomonas sp. and the fluorescence of an acidotropic probe labeling the food vacuoles. Feeding frequency increased in the beginning of the experiment and then began to decline, reaching a maximum of 47.5% of the whole P. parvum population after 212 min. The maximum number of consumed Rhodomonas sp. cells was 0.8 per P. parvum cell, and occurred after 114 min corresponding to an ingestion rate of 0.4 Rhodomonas sp. cells/P. parvum/h. Cells from the feeding P. parvum population were sorted, washed, and subjected to a real-time PCR assay targeting the cryptophyte 18S locus. There was a correlation between cycle threshold (Ct) values and number of consumed prey cells calculated by fluorescence. Overall, this study shows that flow cytometric analysis, of the acidotropic probe and prey pigments, is an efficient and rapid tool in enumerating food vacuoles and the number of prey cells consumed. Furthermore, we suggest that real-time PCR can be applied to cells sorted by flow cytometry, thus allowing for the detection and potential quantification of the targeted prey cells.  相似文献   

19.
Riparian buffers can be effective at removing phosphorus (P) in overland flow, but their influence on subsurface P loading is not well known. Phosphorus concentrations in the soil, soil solution, and shallow ground water of 16 paired cropland-buffer plots were characterized during 2004 and 2005. The sites were located at two private dairy farms in Central New York on silt and gravelly silt loams (Aeric Endoaqualfs, Fluvaquentic Endoaquepts, Fluvaquentic Eutrudepts, Glossaquic Hapludalfs, and Glossic Hapludalfs). It was hypothesized that P availability (sodium acetate extractable-P) and soil-landscape variability would affect P release to the soil solution and shallow ground water. Results showed that P availability tended to be greater in crop fields relative to paired buffer plots. Soil P was a good indicator of soil solution dissolved (<0.45 microm) molybdate-reactive P (DRP) concentrations among plots, but was not independently effective at predicting ground water DRP concentrations. Mean ground water DRP in corn fields ranged from < or =20 to 80 microg L(-1), with lower concentrations in hay and buffer plots. More imperfectly drained crop fields and buffers tended to have greater average DRP, particulate (> or =0.45 microm) reactive P (PRP), and dissolved unreactive P (DUP) concentrations in ground water. Soil organic matter and 50-cm depth soil solution DRP in buffers jointly explained 75% of the average buffer ground water DRP variability. Results suggest that buffers were relatively effective at reducing soil solution and shallow ground water DRP concentrations, but their impact on particulate and organic P in ground water was less clear.  相似文献   

20.
Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms’ development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号