首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
雷春生  朱晓峰 《环境工程》2016,34(6):95-100
以乙醇胺、乙二胺、二乙烯三胺和三乙醇胺为胺源,采用水热法对凹凸黏土进行胺化处理,制备甲醛吸附剂。通过X射线衍射、场发射扫描电镜、能量分析光谱仪、氮气吸附-脱附等温线和傅里叶红外光谱对样品粉末进行表征测试,探究不同胺处理的黏土对甲醛吸附性能的差异。结果表明:黏土经胺化处理后,表面带有氨基,对甲醛均具有较好的吸附性能,其中乙醇胺处理的黏土样品吸附性最强,循环吸附6次的过程中,试验箱内甲醛浓度均低于0.1 mg/m3。  相似文献   

2.
二氧化钛颗粒的制备及其脱硫吸附性能   总被引:5,自引:0,他引:5  
罗永刚  李大骥  黄震 《环境科学》2003,24(1):147-151
采用溶胶-凝胶法(Sol-gel)在不同烧结温度(340℃,440℃,540℃,640℃)下制备了4种多孔TiO2颗粒,X射线衍射法(XRD)测得4种样品的晶相均为锐钛矿型.低温77K氮气吸附法计算4种样品的比表面积为79~124m2/g,平均孔径56.8~254.8 A.电子扫描电镜分析了样品的表面结构为多孔高孔隙率结构在固定床中对4种样品进行动态脱硫试验,试验结果表明烧结温度在540℃时制备的样品品质较好,每g TiO2颗粒可吸附38.9mg的SO2.以SG 540样品为例,研究了固定床中吸附温度,气相中SO2的浓度以及气体流速对其脱硫吸附性能的影响.与活性炭、沸石物理吸附剂比较,TiO2颗粒具有较高的脱硫吸附能力.FTIR红外光谱分析法,结合加热脱附试验的结果,得知TiO2颗粒吸附剂脱硫的机理主要是物理吸附.  相似文献   

3.
<正> 喇曼光谱与红外光谱一样,是属于研究分子振动和转动的手段,同时利用这两种手段进行矿物学研究能相互补充信息,获得更好的效果。 红外光谱的应用已较为广泛,但喇曼光谱在国内应用得还不多,尤其是对矿物学的研究更为薄弱。喇曼光谱测试制样方便,无论是固体样品或液体样品;透明的样品或不透明的样  相似文献   

4.
CaCl2溶液为离子交换溶液,通过对以徐州煤系高岭土为原料水热制备的4A沸石分子筛进行离子交换来制备5A沸石。采用X-射线衍射(XRD)、傅立叶转换红外光谱(FT-IR)及扫描电子显微镜(SEM)等对样品进行分析表征,并通过甲基橙吸附试验研究样品的吸附性能。5A沸石样品结晶度随交换溶液浓度的增加而增加,CaCl2溶液浓度为2.5 mol/L时所得5A沸石样品结晶度最高,颗粒均匀。5A沸石样品常温下具有良好的吸附性能,对甲基橙吸附量最高可比4A沸石提高15.5%,达12.34 mg/g。  相似文献   

5.
该文以废弃聚丙烯为碳源、甲酸镍为催化剂前驱体、蒙脱土为载体,采用高温裂解法制备了碳纳米管。通过红外光谱(FTIR)、X射线衍射仪(XRD)、扫描电镜(SEM)和紫外分光光度计(UV)对自制碳纳米管进行了结构表征和对亚甲基蓝吸附性能的测试。实验结果表明:该方法制备的碳纳米管符合其结构特征且具有优异的吸附性能,当亚甲基蓝浓度为10%,p H=9时,吸附效率可达97.2%,随着p H值降低、亚甲基蓝浓度的升高,吸附效率降低。所制备的碳纳米管在环境领域具有很高的应用价值。  相似文献   

6.
采用共沉淀法制备磁性埃洛石复合材料,并对其吸附十八烷胺的行为进行研究.利用红外光谱(FT-IR)、透射电子显微电镜(TEM)和振动样品磁强计(VSM)对磁性埃洛石进行表征,研究吸附剂浓度、吸附时间、溶液p H值和温度对十八烷胺在磁性埃洛石上吸附的影响,采用Lagrange准二级动力学方程、Langmuir等温线方程及Freundlich等温线方程对实验数据进行拟合.结果表明:Fe3O4纳米粒子成功的负载到埃洛石的表面;p H值和温度对十八烷胺在磁性埃洛石上的吸附影响较大;十八烷胺在磁性埃洛石上的吸附符合二级动力学模型;热力学符合Langmuir等温线方程,并且高温利于十八烷胺的吸附.  相似文献   

7.
胡敏酸是土壤有机质的重要组成部分。胡敏酸的物化结构和特性直接影响其环境地球化学行为,因此,也是胡敏酸地球化学研究的重要内容。傅里叶变换-红外光谱是胡敏酸物化结构和性质研究的强大工具,以往的研究通常采用压片-透射吸收法来研究分析胡敏酸的有机官能团信息。本工作采用透射-傅里叶变换-红外光谱和衰减全反射-傅里叶变换-红外光谱两种分析方法对比研究了黄壤和石灰土中胡敏酸的有机官能团信息。结果表明,两种分析方法给出完全一致的研究结果,即:黄壤胡敏酸脂肪碳含量较高,芳香结构含量较低;石灰土胡敏酸分子的脂肪碳含量较低,芳香结构和含氧官能团含量较高。比较而言,衰减全反射-傅里叶变换-红外光谱操作简便,无需对待测胡敏酸样品进行预处理,可以广泛地应用于胡敏酸红外光谱的分析。  相似文献   

8.
通过原位化学聚合法制备CNT/PANI复合材料,采用电镜扫描(SEM)、傅里叶红外光谱技术(FTIR)、X射线光电子能谱技术(XPS)和循环伏安法(CV)对复合材料的物理化学特性进行表征和测试.结果表明,复合材料比表面积和孔隙率减少,但比电容增加.CNT/PANI复合材料电极对铜离子的去除效果是CNT电极的4.24倍,吸附量随着电压、铜离子初始浓度和p H的增加而增加,电吸附过程符合准一级动力学.  相似文献   

9.
胡敏酸是土壤有机质的重要组成部分。胡敏酸的物化结构和特性直接影响其环境地球化学行为,因此,也是胡敏酸地球化学研究的重要内容。傅里叶变换-红外光谱是胡敏酸物化结构和性质研究的强大工具,以往的研究通常采用压片-透射吸收法来研究分析胡敏酸的有机官能团信息。本工作采用透射-傅里叶变换-红外光谱和衰减全反射-傅里叶变换-红外光谱两种分析方法对比研究了黄壤和石灰土中胡敏酸的有机官能团信息。结果表明,两种分析方法给出完全一致的研究结果,即:黄壤胡敏酸脂肪碳含量较高,芳香结构含量较低;石灰土胡敏酸分子的脂肪碳含量较低,芳香结构和含氧官能团含量较高。比较而言,衰减全反射-傅里叶变换-红外光谱操作简便,无需对待测胡敏酸样品进行预处理,可以广泛地应用于胡敏酸红外光谱的分析。  相似文献   

10.
通过含甲亚胺基团的二酸与二胺反应,制备了聚甲亚胺酰胺树脂。用KBr压片法对其进行傅里叶变换红外光谱分析,并对其吸附去除水溶液中铅离子进行研究。探索了pH、铅离子初始浓度、吸附时间、吸附剂用量对吸附量的影响。以吸附量和去除率为综合目标,最优条件是:pH为6.5,吸附剂投放量为50 mg,铅离子初始浓度为300 mg/L,吸附时间为60 min;此时吸附量达到275 mg/g,去除率达91.7%。25℃时在研究浓度范围内,铅离子吸附去除过程可以用Langmuir等温线模型和Freundlich模型描述;其动力学过程符合准二级动力学方程。  相似文献   

11.
以毛竹为载体、铁钴复合盐溶液为前驱体,采用水热浸渍法制备了毛竹基Fe-Co/C复合材料,并用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FT-IR)和比表面积分析仪(BET)对样品进行了表征分析。通过批量实验研究了Fe-Co/C复合材料对阿特拉津的吸附特性。该吸附材料对水体中阿特拉津显示了良好的吸附性能。在阿特拉津初始浓度为10.0 mg/L,溶液pH为7.0,吸附剂用量为0.4 g/L,反应温度为25℃时,阿特拉津的平衡吸附量为21.89 mg/g。吸附过程符合二级动力学模型和Langmuir吸附等温式。热力学结果表明,Fe-Co/C复合材料对阿特拉津吸附是自发吸热过程。红外结果表明,氢键是Fe-Co/C复合材料对阿特拉津吸附的主要作用力,孔隙效应和л-л电子共轭作用也可能促进复合材料对阿特拉津的吸附。  相似文献   

12.
为了提高褐铁矿对砷的吸附能力,分别采用球磨和煅烧的方式对褐铁矿进行改性处理.使用氮气吸脱附法、X射线衍射光谱(XRD)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)等方法对改性材料进行表征,探究其去除水体中As(Ⅴ)的吸附机理及对土壤砷的稳定化效果.结果表明,两种改性方法制备的材料对As(Ⅴ)的吸附过程均符合...  相似文献   

13.
采用粉末压片、X射线荧光光谱分析土壤中的多种金属元素,经标准样品验证,该方法的检出限、准确度、精密度均符合分析要求。与原子吸收光谱法做对比试验,结果表明Ni和Cr相对偏差较大,而Cu、Zn、Mn和Pb相对偏差均〈5%。实验表明x射线荧光光谱分析法样品制备简单、分析速度快,适用于应急监测。  相似文献   

14.
吸附研究包括两个方面:吸附材料制备表征及吸附材料的应用。在研究吸附材料方面BET,XRD,扫描电镜等仪器有广泛的用途,在应用方面,研究吸附机理时红外光谱可分析吸附剂与吸附质结合状态,研究吸附质浓度变化时原子荧光分析仪,原子吸收ICP等可分析污水中重金属的含量。GC-MS联用技术可用于水体污染物的检测。这些仪器都在吸附方面有着很多的用途。  相似文献   

15.
为研究原料和制炭方法对生物炭吸附抗生素性能的影响,选取芦苇、棉杆和竹柳,经限氧和曝氧法制备得到生物炭,研究其对土霉素(OTC)和磺胺甲恶唑(SMX)的吸附性能及其吸附机理.研究发现:物源特征和制炭方法共同决定了生物炭对抗生素的吸附功效.芦苇和棉秆宜采用限氧法制备成炭,竹柳宜采用曝氧法制备成炭;整体上以曝氧竹柳炭对抗生素的吸附性能最优,单一浓度(50mg/L)下,其对OTC和SMX的吸附量分别为11.98和10.12mg/g.批吸附实验和傅里叶变换红外光谱分析表明,π-π EDA相互作用是竹柳炭吸附抗生素的主要机理.静电吸引有助于高pH值下曝氧竹柳炭对OTC的吸附,而孔隙填充可能对曝氧竹柳炭吸附SMX起到促进作用.曝氧竹柳炭对抗生素的吸附性能优于其他炭品,是去除水体抗生素的优选材料.  相似文献   

16.
文章以生姜秸秆为原料,采用氯化锌活化法制备生姜秸秆基多孔活性炭,优化材料最佳制备条件。利用扫描电子显微镜、X射线衍射仪、氮气吸附物理分析仪、傅里叶红外光谱和拉曼光谱等表征手段对生姜秸秆基多孔活性炭形貌结构以及化学组成等进行分析,并考察溶液pH值、吸附时间、温度和初始浓度对其吸附亚甲基蓝(MB)染料的影响。结果表明:生姜秸秆基多孔活性炭最佳制备条件为氯化锌与生姜秸秆质量比2∶1、活化温度500℃、活化时间1 h。制备活性炭具有大量的孔径结构和丰富的表面基团,对MB吸附效果明显,吸附量最高可达565.0 mg/g。溶液pH、初始浓度、吸附时间和温度对活性炭吸附性能有一定影响,吸附过程符合准二级动力学模型和Langmuir等温线模型。该研究制备的生姜秸秆基多孔活性炭材料结构和吸附性能优良,可作为优质吸附剂应用于污水处理领域,同时为生姜秸秆的资源化利用提供新途径。  相似文献   

17.
稻壳活性炭对水中染料的吸附特性及其回收利用   总被引:6,自引:1,他引:5  
以稻壳为原料,采用复合活化剂制备稻壳活性炭.通过氮气吸附等温线,傅里叶红外光谱,X射线光电子能谱仪,零电荷点等手段,分析了所制备的稻壳活性炭的孔结构和表面性质.研究了稻壳活性炭对甲基橙的吸附特性,同时对吸附饱和的稻壳活性炭进行热再生以及由高温灼烧法制备二氧化硅进行了初步探索.结果表明:稻壳活性炭对甲基橙的去除率随着吸附剂用量增加而提高;随着pH值的升高去除率下降;吸附剂可以应用于高盐度条件下的吸附;随着溶液初始溶液增加去除率下降;符合Langmuir吸附等温式,吸附过程主要由化学吸附控制;吸附饱和的稻壳活性炭经过一次再生可以得到性能较好的活性炭;对吸附饱和的稻壳活性炭,在800℃条件下可以制得纳米级且具有一定晶型的二氧化硅.  相似文献   

18.
为研究柠檬渣对污水中Cu2+的吸附性能,利用H2SO4与NaOH对柠檬渣进行改性制备吸附剂,并采用响应曲面法对制备工艺进行了优化. 测试了吸附剂的比表面积、孔容与孔径等性能,并利用红外光谱(IR)、紫外光谱(UV)、差热分析(TG-DTA)、X射线衍射(XRD)、电镜(SEM)和能谱(EDS)对吸附剂进行了表征. 通过响应面法优化后的最佳改性条件:H2SO4改性后的炭化温度为80 ℃,NaOH改性后的炭化温度为90 ℃,w(NaOH)∶w(H2SO4)为0.3.改性后的柠檬渣较原柠檬渣比表面积由88.3 m2/g增至392.2 m2/g,灰分率降低了90.7%,碘吸附值提高了近5倍,孔径分布主要是中孔;柠檬渣属于无定型结构,改性后的柠檬渣有CC生成,形成了芳香烃,表面形成了密集的孔;改性后柠檬渣主要由碳元素组成,从而能有效吸附Cu2+,对Cu2+的吸附率能达到85.3%. 由红外分析可知,改性后的柠檬渣吸附Cu2+后3 804 cm-1处的吸收峰消失,说明Cu2+取代了这个吸收峰所代表的官能团及部分O—H中的H+.   相似文献   

19.
吸附研究包括两个方面:吸附材料制备表征及吸附材料的应用.在研究吸附材料方面BET,XRD,扫描电镜等仪器有广泛的用途,在应用方面,研究吸附机理时红外光谱可分析吸附剂与吸附质结合状态,研究吸附质浓度变化时原子荧光分析仪,原子吸收ICP等可分析污水中重金属的含量.GC-MS联用技术可用于水体污染物的检测.这些仪器都在吸附方面有着很多的用途.  相似文献   

20.
为提升凹凸棒石对水溶液中磷的吸附性能,以凹凸棒石、氢氧化铝、熟石灰为原料,采用浸渍-煅烧法制备ATP-IA(改性凹凸棒石).通过吸附磷试验,探讨ATP-IA吸附性能以及投加量对吸附效果的影响;利用SEM(扫描电镜)、XRD(X射线衍射光谱)、XRF(X射线荧光光谱)和FTIR(傅里叶转换红外光谱)对ATP-IA表征,并结合吸附动力学、热力学和等温吸附试验探讨ATP-IA吸附磷机制.结果表明,ATP-IA平衡吸附容量为26.34 mg/g(凹凸棒石的平衡吸附量为0.88 mg/g),对磷的去除率可以达到99.36%;表征结果表明,改性可使部分凹凸棒石转变为钙沸石,改性能脱除凹凸棒石晶体内的结晶水,使凹凸棒石比表面积显著提升;动力学试验表明,ATP-IA吸附磷过程符合准二级动力学方程,说明ATP-IA吸附磷过程中反应控速步骤为化学反应;等温吸附试验结果符合Freundlich方程,表明吸附为多分子层不均匀吸附;热力学分析表明,ATP-IA吸附磷属于自发进行的吸热过程,且同时包含物理吸附和化学吸附.研究显示,浸渍-煅烧法改性会改变凹凸棒石部分理化性质,能显著提高凹凸棒石对磷的去除率及平衡吸附容量.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号