首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Based on the reality of (a) soil heterogeneity in the vadose zone, (b) enhanced desorption from soil and solubility in water of water insoluble contaminants in the presence of surfactants, and (c) wetting/drying cycles of groundwater recharge (a major cause of fractures formation), a coherent “short-cut” conceptual approach is advanced to account for enhanced groundwater contamination. This is an attempt to close the gap between theory, lab simulations and conventional modelling-based predictions, and observed higher concentrations and more rapid arrival times of contaminants reaching groundwater. Recent data concerning chloride ion and non-ionic surfactants concentrations in aquifers and groundwater wells, combined with previous results concerning the concentrations of tritium, chlorides, metals, organic hydrocarbons and surfactants in the unsaturated and saturated zones of Israel's aquifers, are accounted for in terms of the “short-cut” approach. The contradiction between predictions of groundwater contamination made with conventional, deterministic, homogeneous models and the actual observed behavior of contaminants in soils and aquifers is thus explaind. The “short cut” approach should not be perceived as a better type of model to guide modelling. Rather, it is a proposal for a conceptual change from the realistically invalid, but commonly accepted, conventional “buffer-protective soil/long-term groundwater contamination” to the “short cut” conceptual model to explain the enhanced groundwater contamination actually observed. Although the validity of the proposed approach is strongly supported by the data here presented for the case of Israel (serving as an illustrative case study), selected results and conclusions drawn from studies conducted worldwide suggest its general applicability and usefulness. A major conclusion evolved from the “short-cut” conceptual model is that contemporary groundwater management policies, based on the current perception of groundwater contamination processes and their modelling, may result in an irreversible detrimental effect on the environmental situation in the long run. In any case, prevention, rather than correction/remediation, is strongly recommended as the strategy of choice for rational long-term management of groundwater resources.  相似文献   

2.
Closed-loop recycling of steel in automobiles is particularly difficult because of the low tolerance for impurities and the use of composites of various types of steel products. Technologies that reduce impurities or increase impurity tolerance must be developed and introduced to the steel recycling system at the appropriate time. This study evaluated the feasibility of closed-loop recycling in the automobile industry in China. Material pinch analysis combined with dynamic modeling of the life cycle of steel sheets used in the manufacture of automobiles was employed to estimate the amount of steel sheet scrap available for closed-loop recycling and the amount of copper contamination in the scrap. The results indicate that by 2050, more than half of the old steel sheet scrap generated annually will have to be down-cycled because of its high copper contamination. However, scenario analyses of three types of technologies for mitigating the problem of copper contamination showed the potential for increasing the amount of old scrap used in closed-loop recycling. In particular, improving copper tolerance in the steel production process could be effective both now and in 2050.  相似文献   

3.
4.
To date, non-food vegetable oil has been considered as the primary source for biodiesel production. Rubber seed oil has high acid value (34 mgKOH/g) and can be used for biodiesel synthesis. The purpose of this study was to investigate esterification of fatty acid, which derived from rubber seed oil, in a plug flow reactor system at high temperature and low methanol consumption. Response surface methodology was applied for design experiment and optimization of esterification reaction. Temperature, methanol consumption, and sulfuric acid were chosen as variables to examine their influence in a conversion to methyl ester. At 140°C, at 5:1 methanol to fatty acid ratio (by mole), H2SO4 1.5 (%v/w), and space time 20 min, the conversion to methyl ester attained 98.2%. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-Mass spectrometry (GC-MS) were used for analysis and to confirm the formation of methyl ester. Methyl ester was characterized for biodiesel fuel properties in accordance to ASTM standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号