首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propagule pressure can determine the success or failure of invasive plant range expansion. Range expansion takes place at large spatial scales, often encompassing many types of land cover, yet the effect of landscape context on propagule pressure remains largely unknown. Many studies have reported a positive correlation between invasive plant abundance and human land use; increased propagule pressure in these landscapes may be responsible for this correlation. We tested the hypothesis that increased rates of seed dispersal by fig-eating birds, which are more common in urban habitats, result in an increase in invasive strangler fig abundance in landscapes dominated by human land use. We quantified abundance of an invasive species (Ficus microcarpa) and a native species (F. aurea) of strangler fig in plots spanning the entire range of human land use in South Florida, USA, from urban parking lots to native forest. We then compared models that predicted juvenile fig abundance based on distance to adult fig seed sources and fig-eating bird habitat quality with models that lacked one or both of these terms. The best model for juvenile invasive fig abundance included both distance to adult and fig-eating bird habitat terms, suggesting that landscape effects on invasive fig abundance are mediated by seed-dispersing birds. In contrast, the best model for juvenile native fig abundance included only presence/absence of adults, suggesting that distance from individual adult trees may have less effect on seed limitation for a native species compared to an invasive species undergoing range expansion. However, models for both species included significant effects of adult seed sources, implying that juvenile abundance is limited by seed arrival. This result was corroborated by a seed addition experiment that indicated that both native and invasive strangler figs were strongly seed limited. Understanding how landscape context affects the mechanisms of plant invasion may lead to better management techniques. Our results suggest that prioritizing removal of adult trees in sites with high fig-eating bird habitat may be the most effective method to control F. microcarpa abundance.  相似文献   

2.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

3.
To elucidate the factors that affect the performance of plants in their natural environment, it is essential to study interactions with other neighboring plants, as well as with above- and belowground higher trophic organisms. We used a long-term field experiment to study how local plant community diversity influenced colonization by the biennial composite Senecio jacobaea in its native range in The Netherlands in Europe. We tested the effect of sowing later-succession plant species (0, 4, or 15 species) on plant succession and S. jacobaea performance. Over a period of eight years, the percent cover of S. jacobaea was relatively low in communities sown with 15 or 4 later-succession plant species compared to plots that were not sown, but that were colonized naturally. However, after four years of high abundance, the density of S. jacobaea in unsown plots started to decline, and the size of the individual plants was smaller than in the plots sown with 15 or 4 plant species. In the unsown plots, densities of aboveground leaf-mining, flower-feeding, and stem-boring insects on S. jacobaea plants were lower than on plants in sown plots, and there was a strong positive relationship between plant size and levels of herbivory. In a greenhouse experiment, we grew S. jacobaea in sterilized soil inoculated with soil from the different sowing treatments of the field experiment. Biomass production was lower when S. jacobaea test plants were grown in soil from the unsown plots than in soil from the sown plots (4 or 15 species). Molecular analysis of the fungal and bacterial communities revealed that the composition of fungal communities in unsown plots differed significantly from those in sown plots, suggesting that soil fungi could have been involved in the relative growth reduction of S. jacobaea in the greenhouse bioassay. Our results show that, in its native habitat, the abundance of S. jacobaea depends on the initial composition of the plant community and that, on a scale of almost a decade, its interactions with plant and soil communities and aboveground invertebrates may influence the dynamics of this colonizing species.  相似文献   

4.
Plant biomass and plant abundance can be controlled by aboveground and belowground natural enemies. However, little is known about how the aboveground and belowground enemy effects may add up. We exposed 15 plant species to aboveground polyphagous insect herbivores and feedback effects from the soil community alone, as well as in combination. We envisaged three possibilities: additive, synergistic, or antagonistic effects of the aboveground and belowground enemies on plant biomass. In our analysis, we included native and phylogenetically related range-expanding exotic plant species, because exotic plants on average are less sensitive to aboveground herbivores and soil feedback than related natives. Thus, we examined if lower sensitivity of exotic plant species to enemies also alters aboveground-belowground interactions. In a greenhouse experiment, we exposed six exotic and nine native plant species to feedback from their own soil communities, aboveground herbivory by polyphagous insects, or a combination of soil feedback and aboveground insects and compared shoot and root biomass to control plants without aboveground and belowground enemies. We observed that for both native and range-expanding exotic plant species effects of insect herbivory aboveground and soil feedback added up linearly, instead of enforcing or counteracting each other. However, there was no correlation between the strength of aboveground herbivory and soil feedback. We conclude that effects of polyphagous aboveground herbivorous insects and soil feedback add up both in the case of native and related range-expanding exotic plant species, but that aboveground herbivory effects may not necessarily predict the strengths of soil feedback effects.  相似文献   

5.
The extinction of large herbivores, often keystone species, can dramatically modify plant communities and impose key biotic thresholds that may prevent an ecosystem returning to its previous state and threaten native biodiversity. A potentially innovative, yet controversial, landscape‐based long‐term restoration approach is to replace missing plant‐herbivore interactions with non‐native herbivores. Aldabran giant (Aldabrachelys gigantea) and Madagascan radiated (Astrochelys radiata) tortoises, taxonomically and functionally similar to the extinct Mauritian giant tortoises (Cylindraspis spp.), were introduced to Round Island, Mauritius, in 2007 to control the non‐native plants that were threatening persistence of native species. We monitored the response of the plant community to tortoise grazing for 11 months in enclosures before the tortoises were released and, compared the cost of using tortoises as weeders with the cost of using manual labor. At the end of this period, plant biomass; vegetation height and cover; and adult, seedling, flower, and seed abundance were 3–136 times greater in adjacent control plots than in the tortoise enclosures. After their release, the free‐roaming tortoises grazed on most non‐native plants and significantly reduced vegetation cover, height, and seed production, reflecting findings from the enclosure study. The tortoises generally did not eat native species, although they consumed those native species that increased in abundance following the eradication of mammalian herbivores. Our results suggest that introduced non‐native tortoises are a more cost‐effective approach to control non‐native vegetation than manual weeding. Numerous long‐term outcomes (e.g., change in species composition and soil seed bank) are possible following tortoise releases. Monitoring and adaptive management are needed to ensure that the replacement herbivores promote the recovery of native plants. Estudiando el Potencial para Restaurar Ecosistemas Históricos de Forrajeo con Reemplazos Ecológicos de Tortugas Terrestres  相似文献   

6.
Eckberg JO  Tenhumberg B  Louda SM 《Ecology》2012,93(8):1787-1794
A current challenge in ecology is to better understand the magnitude, variation, and interaction in the factors that limit the invasiveness of exotic species. We conducted a factorial experiment involving herbivore manipulation (insecticide-in-water vs. water-only control) and seven densities of introduced nonnative Cirsium vulgare (bull thistle) seed. The experiment was repeated with two seed cohorts at eight grassland sites uninvaded by C. vulgare in the central Great Plains, USA. Herbivory by native insects significantly reduced thistle seedling density, causing the largest reductions in density at the highest propagule inputs. The magnitude of this herbivore effect varied widely among sites and between cohort years. The combination of herbivory and lower propagule pressure increased the rate at which new C. vulgare populations failed to establish during the initial stages of invasion. This experiment demonstrates that the interaction between biotic resistance by native insects, propagule pressure, and spatiotemporal variation in their effects were crucial to the initial invasion by this Eurasian plant in the western tallgrass prairie.  相似文献   

7.
Abstract:  Despite many successful reintroductions of large mammalian herbivores throughout the world, remarkably little attention has focused on how these actions affect native and exotic vegetation at reintroduction sites. One such herbivore is tule elk ( Cervus elaphus nannodes ), which was on the brink of extinction in the mid 1800s, but now has numerous stable populations due to intensive reintroduction efforts. Here, we summarize results from a 5-year exclosure experiment that explored the effects of tule elk on a coastal grassland in northern California. Elk significantly altered the species composition of this community; the response of annual species (dominated heavily by exotic taxa) was dramatically different from perennial species. Elk herbivory increased the abundance and aboveground biomass of native and exotic annuals, whereas it either had no effect on or caused significant decreases in perennials. Elk also decreased the cover of native shrubs, suggesting that these herbivores play an important role in maintaining open grasslands. In addition, elk significantly reduced the abundance and biomass of a highly invasive exotic grass , Holcus lanatus, which is a major problem in mesic perennial grasslands. Our results demonstrate that the successful reintroduction of a charismatic and long-extirpated mammal had extremely complex effects on the plant community, giving rise to both desirable and undesirable outcomes from a management perspective. We suspect that these kinds of opposing effects are not unique to tule elk and that land managers will frequently encounter them when dealing with reintroduced mammals.  相似文献   

8.
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.  相似文献   

9.
Invasive plants may have variable effects within a given environment depending on their interactions with the dominant native species, yet little research has examined such species-species interactions within a site. Savanna trees with nonoverlapping canopies offer an ideal opportunity to assess associated changes in the ecosystem processes that result from interactions between an invasive species and different native tree species. We examined the influence of the exotic invasive shrub Lonicera maackii on decomposition dynamics under three native tree species: Fraxinus quadrangulata, Quercus muehlenbergii, and Carya ovata. Litter decomposition rates and litter C and N were evaluated over two years using single- and mixed-species litterbags (L. maackii and individual tree species litter); microarthropod abundance was measured at 6 weeks using Tulgren funnels. Litter from the invasive L. maackii decomposed and lost N more rapidly than the litter of the three native tree species. The rate at which L. maackii decomposed depended on its location, with L. maackii litter decomposing and losing N more rapidly under C. ovata than under the other two native tree species. Mixing L. maackii with the native species' litter did not accelerate litter mass loss overall but did result in synergistic N losses at variable times throughout the experiment, further highlighting the variable interaction between native species and L. maackii. Nitrogen loss was significantly higher than expected in mixtures of C. ovata + L. maackii litter at 6 weeks, in F. quadrangulata + L. maackii litter at 12 weeks, and in Q. muehlenbergii + L. maackii litter at 24 weeks. If the effects of invasive species on certain ecosystem processes, such as litter decomposition, are strongly influenced by their association with native species, this could suggest the need for a more nuanced understanding of the vulnerability of ecosystem processes to invasions of L. maackii and potentially other invasive species.  相似文献   

10.
Parker IM  Gilbert GS 《Ecology》2007,88(5):1210-1224
An important question in the study of biological invasions is the degree to which successful invasion can be explained by release from control by natural enemies. Natural enemies dominate explanations of two alternate phenomena: that most introduced plants fail to establish viable populations (biotic resistance hypothesis) and that some introduced plants become noxious invaders (natural enemies hypothesis). We used a suite of 18 phylogenetically related native and nonnative clovers (Trifolium and Medicago) and the foliar pathogens and invertebrate herbivores that attack them to answer two questions. Do native species suffer greater attack by natural enemies relative to introduced species at the same site? Are some introduced species excluded from native plant communities because they are susceptible to local natural enemies? We address these questions using three lines of evidence: (1) the frequency of attack and composition of fungal pathogens and herbivores for each clover species in four years of common garden experiments, as well as susceptibility to inoculation with a common pathogen; (2) the degree of leaf damage suffered by each species in common garden experiments; and (3) fitness effects estimated using correlative approaches and pathogen removal experiments. Introduced species showed no evidence of escape from pathogens, being equivalent to native species as a group in terms of infection levels, susceptibility, disease prevalence, disease severity (with more severe damage on introduced species in one year), the influence of disease on mortality, and the effect of fungicide treatment on mortality and biomass. In contrast, invertebrate herbivores caused more damage on native species in two years, although the influence of herbivore attack on mortality did not differ between native and introduced species. Within introduced species, the predictions of the biotic resistance hypothesis were not supported: the most invasive species showed greater infection, greater prevalence and severity of disease, greater prevalence of herbivory, and greater effects of fungicide on biomass and were indistinguishable from noninvasive introduced species in all other respects. Therefore, although herbivores preferred native over introduced species, escape from pest pressure cannot be used to explain why some introduced clovers are common invaders in coastal prairie while others are not.  相似文献   

11.
Exotic species have been observed to be more prevalent in sites where the richness of native species is highest, possibly reflecting variation among sites in resources, propagule supply, heterogeneity, or disturbance. However, such a pattern leaves unclear whether natives at species-rich sites are subject to especially severe impacts from exotics as a result. We considered this question using path models in which relationships between exotic cover and native richness were evaluated in the presence of correlated environmental factors. At 109 sites on serpentine soils across California, USA, exotic cover was positively correlated with total native herbaceous richness and was negatively correlated with the richness of both serpentine-endemic and rare native herbs. However, in path models that accounted for the influences of soil chemistry, disturbance, overstory cover, and regional rainfall and elevation, we found no indication that exotic cover reduced any component of native herb richness. Rather, our results indicated similarities and differences in the conditions favoring exotic, native, endemic, and rare species. Our results suggest that, in spite of some localized impacts, exotic species are not exerting a detectable overall effect on the community richness of the unique native flora of Californian serpentine.  相似文献   

12.
McCauley DJ  Keesing F  Young TP  Allan BF  Pringle RM 《Ecology》2006,87(10):2657-2663
Many large mammal species are declining in African savannas, yet we understand relatively little about how these declines influence other species. Previous studies have shown that the removal of large herbivorous mammals from large-scale, replicated experimental plots results in a dramatic increase in the density of small mammals, an increase that has been attributed to the relaxation of competition between rodents and large herbivores for food resources. To assess whether the removal of large herbivores also influenced a predator of small mammals, we measured the abundance of the locally common olive hissing snake, Psammophis mossambicus, over a 19-mo period in plots with and without large herbivores. Psammophis mossambicus was significantly more abundant in plots where large herbivores were removed and rodent numbers were high. Based on results from raptor surveys and measurements of vegetative cover, differences in snake density do not appear to be driven by differences in rates of predation on snakes. Instead, snakes appear to be responding numerically to greater abundances of small-mammal prey in areas from which large herbivores have been excluded. This is the first empirical demonstration of the indirect effects of large herbivores on snake abundance and presents an interesting example of how the influence of dominant and keystone species can move through a food web.  相似文献   

13.
One commonly accepted mechanism for biological invasions is that species, after introduction to a new region, leave behind their natural enemies and therefore increase in distribution and abundance. However, which enemies are escaped remains unclear. Escape from specialist invertebrate herbivores has been examined in detail, but despite the profound effects of generalist herbivores in natural communities their potential to control invasive species is poorly understood. We carried out parallel laboratory feeding bioassays with generalist invertebrate herbivores from the native (Europe) and from the introduced (North America) range using native and nonnative tetraploid populations of the invasive spotted knapweed, Centaurea stoebe. We found that the growth of North American generalist herbivores was far lower when feeding on C. stoebe than the growth of European generalists. In contrast, North American and European generalists grew equally well on European and North American tetraploid C. stoebe plants, lending no support for an evolutionary change in resistance of North American tetraploid C. stoebe populations against generalist herbivores. These results suggest that biogeographical differences in the response of generalist herbivores to novel plant species have the potential to affect plant invasions.  相似文献   

14.
The enemy-release hypothesis (ERH) states that species become more successful in their introduced range than in their native range because they leave behind natural enemies in their native range and are thus "released" from enemy pressures in their introduced range. The ERH is popularly cited to explain the invasive properties of many species and is the underpinning of biological control. We tested the prediction that plant populations are more strongly regulated by natural enemies (herbivores and pathogens) in their native range than in their introduced range with enemy-removal experiments using pesticides. These experiments were replicated at multiple sites in both the native and invaded ranges of the grass Brachypodium sylvaticum. In support of the ERH, enemies consistently regulated populations in the native range. There were more tillers and more seeds produced in treated vs. untreated plots in the native range, and few seedlings survived in the native range. Contrary to the ERH, total measured leaf damage was similar in both ranges, though the enemies that caused it differed. There was more damage by generalist mollusks and pathogens in the native range, and more damage by generalist insect herbivores in the invaded range. Demographic analysis showed that population growth rates were lower in the native range than in the invaded range, and that sexually produced seedlings constituted a smaller fraction of the total in the native range. Our removal experiment showed that enemies regulate plant populations in their native range and suggest that generalist enemies, not just specialists, are important for population regulation.  相似文献   

15.
Pettit NE  Naiman RJ 《Ecology》2007,88(8):2094-2104
Piles of large wood (LW) deposited by major floods in river corridors can interact with naturally occurring wildfires from uplands to impact the regeneration of riparian vegetation. This study examines the spatial and short-term temporal response of riparian vegetation and soil nutrients to fire along the Sabie River, South Africa, with special emphasis on the effects of burned LW piles. At the study site there were 112 species of plants recorded with 28% of species restricted to the burned plots. As expected, vegetation cover was significantly lower in burned plots as compared with the unburned plots 12 months postfire. There was a significant influence of LW on species richness with fewer species recorded in the LW plots. For both fire and LW treatments, plant cover showed a significant change over three years. After an initial increase from 12 to 24 months (postfire) there was a decline in plant cover after 36 months. Species community composition was distinctly different between burned and unburned plots 12 months postfire, and the presence of LW affected species composition for burned plots but not for unburned ones. Time series ordination of LW plots highlighted the changes in species composition over the three years of sampling. Of trees with accumulations of LW within 5 m of their base, 48% had been killed by fire as compared to only 4% with no LW accumulations in close proximity. Soil-available P was significantly higher in the burned plots and even higher with burned LW while there were no effects on soil total N. There was also a significant positive trend between available P in soils and plant vegetation cover. Soil-exchangeable K was also significantly higher and total C significantly lower in the burned and LW plots. Burned plots also had significantly higher soil electrical conductivity (EC) and soil pH. The patchy nature of the studied fire, whose complexity is exacerbated by the distribution of flood deposited LW, acted to create a mosaic of alternate successional states as the riparian community recovers from flooding and the subsequent fire. We suspect that the resultant heterogeneity will increase ecosystem resilience by providing flexibility in the form of more options for a system response to subsequent disturbances.  相似文献   

16.
Brandt AJ  Seabloom EW 《Ecology》2012,93(6):1451-1462
The effects of exotic species invasions on biodiversity vary with spatial scale, and documentation of local-scale changes in biodiversity following invasion is generally lacking. Coupling long-term observations of local community dynamics with experiments to determine the role played by exotic species in recruitment limitation of native species would inform both our understanding of exotic impacts on natives at local scales and regional-scale management efforts to promote native persistence. We used field experimentation to quantify propagule and establishment limitation in a suite of native annual forbs in a California reserve, and compared these findings to species abundance trends within the same sites over the past 48 years. Observations at 11 paired sites (inside and outside the reserve) indicated that exotic annual plants have continued to increase in abundance over the past 48 years. This trend suggests the system has not reached equilibrium > 250 years after exotic species began to spread, and 70 years after livestock grazing ceased within the reserve. Long-term monitoring observations also indicated that six native annual forb species went extinct from more local populations than were colonized. To determine the potential role of exotic species in these native plant declines, we added seed of these species into plots adjacent to monitoring sites where plant litter and live grass competition were removed. Experimental results suggest both propagule and establishment limitation have contributed to local declines observed for these native forbs. Recruitment was highest at sites that had current or historical occurrences of the seeded species, and in plots where litter was removed. Grazing history (i.e., location within or outside the reserve) interacted with exotic competition removal, such that removal of live grass competition increased recruitment in more recently grazed sites. Abundance of forbs was positively related to recruitment, while abundance of exotic forbs was negatively related. Thus, exotic competition is likely only one factor contributing to local declines of native species in invaded ecosystems, with a combination of propagule limitation, site quality, and land use history also playing important and interactive roles in native plant recruitment.  相似文献   

17.
Kumar S  Stohlgren TJ  Chong GW 《Ecology》2006,87(12):3186-3199
Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species.  相似文献   

18.
Differing Effects of Cattle Grazing on Native and Alien Plants   总被引:5,自引:0,他引:5  
Abstract:   Habitat managers use cattle grazing to reduce alien plant cover and promote native species in California grasslands and elsewhere in the western United States. We tested the effectiveness of grazing as a restoration method by examining the effects of herbivory on native and alien plants. At Carrizo Plain National Monument, California, we surveyed native and alien species cover in adjacent grazed and ungrazed areas. We also established experimental plots in which plants were clipped or mulch (dead biomass) was removed. In addition, we clipped plants grown in pots and plants in the field that grew with and without competitors. Native species were negatively affected by clipping in 1999, 2000, and 2001, whereas alien species were unaffected. In the experimental field plots, the European annual forb Erodium cicutarium compensated in growth and reproduction following simulated herbivory. In contrast, growth and reproduction of the native perennial bunchgrass Poa secunda were reduced 1 year after clipping. In pots, E. cicutarium overcompensated and grasses undercompensated. In the field, European grasses were unaffected by the removal of competitors. It is unclear by what mechanism E. cicutarium was able to compensate, but the ability may be related to its basal rosette growth form and indeterminately growing inflorescences. The native California grassland community assembled in the absence of grazing herds, whereas invasive European species have been exposed to grazing for centuries. It may be that these invaders have adaptations that better enable them to recover from grazing. In the grassland we studied, the strategy of livestock grazing for restoration is counterproductive. It harms native species and promotes alien plant growth.  相似文献   

19.
Impact of Grazing Intensity during Drought in an Arizona Grassland   总被引:2,自引:0,他引:2  
Abstract:  The ecological benefits of changing cattle grazing practices in the western United States remain controversial, due in part to a lack of experimentation. In 1997 we initiated an experimental study of two rangeland alternatives, cattle removal and high-impact grazing, and compared grassland community responses with those with more conventional, moderate grazing practices. The study was conducted in a high-elevation, semiarid grassland near Flagstaff, Arizona (U.S.A.). We conducted annual plant surveys of modified Whittaker plots for 8 years and examined plant composition shifts among treatments and years. High-impact grazing had strong directional effects that led to a decline in perennial forb cover and an increase in annual plants, particularly the exotic cheatgrass ( Bromus tectorum L.). A twofold increase in plant cover by exotic species followed a severe drought in the sixth year of the study, and this increase was greatest in the high-impact grazing plots, where native cover declined by one-half. Cattle removal resulted in little increase in native plant cover and reduced plant species richness relative to the moderate grazing control. Our results suggest that some intermediate level of cattle grazing may maintain greater levels of native plant diversity than the alternatives of cattle removal or high-density, short-duration grazing practices. Furthermore, episodic drought interacts with cattle grazing, leading to infrequent, but biologically important shifts in plant communities. Our results demonstrate the importance of climatic variation in determining ecological effects of grazing practices, and we recommend improving conservation efforts in arid rangelands by developing management plans that anticipate this variation.  相似文献   

20.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号