首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K. Reid 《Marine Biology》2001,138(1):57-62
 Antarctic krill Euphausia superba has a central role in the ecosystem of the Southern Ocean and knowledge of its growth rate is central to determining the factors influencing population dynamics. The length of Antarctic krill in the diet of Antarctic fur seals Arctocephalus gazella at South Georgia revealed a consistent increase in size between ca. 42 and ca. 54 mm over the period October–March, indicating growth rates much higher than predicted by existing models. Geographical variation in growth rate may result in 2-year-old krill at South Georgia attaining the same size as 3-year-old krill in the Antarctic Peninsula region. The effect of geographical variation in growth rate on the population structure of krill has important implications for comparing the fate of individual cohorts over large scales and in the interpretation of krill life-cycles. Received: 20 May 2000 / Accepted: 11 August 2000  相似文献   

2.
To better understand the feeding and reproductive ecology of euphausiids (krill) in different ocean environments, lipid classes and individual lipid components of four different species of euphausiids from Northeast Pacific (temperate species) and Southern Ocean (Antarctic species) were analyzed in animals from multiple life stages and seasons. The dominant krill species in the Northeast Pacific Euphausia pacifica and Thysanoessa spinifera, were compared to the two major Antarctic species, Euphausia superba and E. crystallorophias. Analysis comprised total lipid and lipid classes together with individual fatty acid and sterol composition in adults, juveniles, and larvae. Antarctic krill had much higher lipid content than their temperate relatives (10–50 and 5–20% of dry mass for Antarctic and temperate species, respectively) with significant seasonal variations observed. Phospholipids were the dominant lipid class in both temperate krill species, while neutral storage lipids (wax esters and triacylglycerols for E. crystallorophias and E. superba, respectively) were the major lipid class in Antarctic krill and accounted for up to 40% of the total lipid content. Important fatty acids, specifically 16:0, 18:1ω9, 20:5ω3, and 22:6ω3, were detected in all four krill species, with minor differences between species and seasons. Detailed lipid profiles suggest that krill alter their lipid composition with life stage and season. In particular, larval Antarctic krill appear to utilize alternate food resources (i.e., sea-ice associated organisms) during austral winter in contrast to juveniles and adults (i.e., seston and copepods). Lipid dynamics in krill among krill in both systems appear closely linked to their life cycle and environmental conditions including food availability, and can provide a more complete comparative ecology of euphausiids in these environmentally distinct systems.  相似文献   

3.
E. Tanoue  S. Hara 《Marine Biology》1986,91(3):359-369
Organic analyses and electron microscopic observations on fecal pellets produced by the Antarctic krill Euphausia superba Dana showed that krill fed on choanoflagellates, the abundant heterotrophic flagellate in the Antarctic Ocean. Two new pathways of organic materials in the Antarctic ecosystem are proposed: (1) a new food chain including non-living particulate and dissolved organics, and bacteria-choanoflagellate-krill-vertebrate, which coexists with the traditional diatom-krill-vertebrate food chain; (2) non-phytoplanktonic organic materials in surface waters are transferred into choanoflagellates and are transported to deep water as fecal pellets which are still useful as nutrition for other organisms there.  相似文献   

4.
Antarctic krill, Euphausia superba Dana, a major component in the southern ocean food web, typically occur in aggregations that range from small, discrete swarms and schools through to layers and superswarms that extend horizontally for several kilometres. A large Longhurst–Hardy plankton recorder has been used to obtain high-resolution serial samples from within two layers (up to 4 km in length) that were found near Elephant Island, north of the Antarctic Peninsula. Krill length, sex and maturity stage, net and acoustic estimates of number density are shown to vary significantly within these large layers. The variation occurring within a single layer is comparable with that occurring in a set of 38 swarms sampled contemporaneously with the layers. Thus, unlike a krill swarm, a whole krill layer may account for a substantial amount of the variation in the local krill population, although individual parts of the layer cannot be considered in this way. The layers play an important role in the ecology of the krill within the area. Firstly, these large layers may contain a significant proportion of the biomass within an area. Secondly, the structure of the layers gives some insight into the ways in which krill swarm formation and dispersal may be occurring. Received: 28 March 1997 / Accepted: 3 December 1997  相似文献   

5.
Variability in the Southern Ocean is frequently reflected in changes in the abundance of Antarctic krill Euphausia superba and subsequent effects on dependent predators. However, the nature and consequences of changes in krill population dynamics that accompany fluctuations in its abundance are essentially unknown. A conceptual model, developed from quantitative measures of krill length in the diet of predators at South Georgia from 1991 to 1997, allowed predictions to be made about the abundance and population structure of krill in 1998 and the consequences for predators. Consistent with model predictions, in 1998 there was a serial change in krill population structure, low krill biomass and low reproductive performance of predators. The change in the modal size of krill, from 56 mm in December to 42 mm in March, was apparently a result of the transport of krill into the region. This is the first occasion when the future status and structure of the krill population at South Georgia has been successfully predicted. By representing local krill population dynamics, which may also reflect large-scale physical and biological processes, predators have a potential key role as indicators of environmental variation in the Southern Ocean at a range of spatial scales. Received: 6 March 1999 / Accepted: 3 September 1999  相似文献   

6.
Acoustic estimates of the densities of Antarctic krill, Euphausia superba, in areas around South Georgia (SG) and Elephant Island (EI) were compared for seven austral summers between 1981 and 1997. Estimated densities of krill at SG were most often lower than at EI, although this may simply have been a function of differences in the survey and data-analysis techniques used at each site. More interestingly, the magnitudes of density and between-year gradients of density at each site were mirrored by those at the other location; for example 1991 and 1994 were years of very low krill density at both SG and EI. There was no apparent lag in changes in density between sites, and ranked between-year gradients in density at both locations were closely correlated. These pronounced similarities suggest that densities of krill at both locations are linked directly, and may be impacted by the same gross physical and biological factors (e.g. recruitment, dispersal and environmental variability) acting over the same temporal and spatial scales. The observed concordance also implies that the pelagic ecosystems at these widely separated sites (≃1500 km distant at opposite sides of the Scotia Sea) are not operating in isolation. Fluctuations in krill density were investigated with reference to cyclical variations in sea ice extent, and in air and sea-surface temperature. The resulting model suggests that the 1999/2000 austral summer will be one of low krill density. Received: 8 October 1998 / Accepted: 12 April 1999  相似文献   

7.
 Various developmental stages (early larvae to adults) of Euphausia superba have been collected in different seasons in the Weddell Sea, the Lazarev Sea and off the Antarctic Peninsula to investigate the role of lipids and fatty acids in the life cycle of the Antarctic krill. The total-lipid data for E. superba exhibited seasonal variations, with low lipid levels in late winter/early spring and the highest levels in autumn. Seasonal changes were most pronounced in the immature and adult specimens, increasing from about 10% lipid of dry mass to more than 40%. The fatty-acid compositions of the younger stages were dominated by 20:5(n-3), 22:6(n-3) and 16:0. These are typical phospholipid fatty acids, which are major biomembrane constituents. The phospholipid composition was similar in the older stages. With increasing storage of triacylglycerols in the lipid-rich immature and adult stages, the fatty acids 14:0, 16:0 and 18:1(n-9) prevailed, comprising about 70% of total triacylglycerol fatty acids. The trophic-marker fatty acids 16:1(n-7) and 18:4(n-3), indicating phytoplankton ingestion, were less abundant. They reflected, however, the dependence of the larvae on phytoplankton as well as the seasonal changes in algal composition. The generally close linear relationships between fatty acids and lipid suggest that the fatty-acid compositions of the collected specimens were largely independent of the respective developmental stage, season and region. The linear fit indicates that triacylglycerol accumulation started at a level of about 5% of total lipid. Considering the various overwintering scenarios under discussion, the life cycle and reproductive strategies of krill are discussed in the context of the lipid metabolism and fatty-acid composition of E. superba. Lipid production is effective enough to accumulate large energy reserves for the dark season, but E. superba does not exhibit the sophisticated biosynthetic pathways known from other Antarctic euphausiids and copepods. Although important, lipid utilisation appears to be just one of several strategies of E. superba to thrive under the extreme Antarctic conditions, and this pronounced versatility may explain the success of this species in the Southern Ocean. Received: 16 June 2000 / Accepted: 18 December 2000  相似文献   

8.
In order to estimate the in situ grazing rates of Salpa thompsoni and their implications for the development of phytoplankton blooms and for the sequestration of biogenic carbon in the high Antarctic, a repeat-grid survey and drogue study were carried out in the Lazarev Sea during austral summer of 1994/1995 (December/January). Exceptionally high grazing rates were measured for S. thompsoni at the onset of a phytoplankton bloom (0.2 to 0.8 μg chlorophyll a l−1) in December 1994, with up to ≃160 μg of plant pigments consumed by an individual salp of 7 to 10 cm length per day. Dense salp swarms extended throughout the marginal ice zone, consuming up to 108% of daily phytoplankton production and 21% of the total chlorophyll a stock. Due to the much faster sinking rates and higher carbon content of salp faecal pellets, the efficiency of downward carbon flux through salps is much higher than through the other major grazers, krill and copepods. S. thompsoni can thus export large amounts of biogenic carbon from the euphotic zone to the deep ocean. With the observed ingestion rates during December 1994, this flux could have attained levels of up to 88 mg C m−2 d−1, accounting for the bulk of the vertical transport of carbon in the Lazarev Sea. However, in January 1995, when phytoplankton concentrations exceeded a threshold level of 1.0 to 1.5 μg chlorophyll a l−1, salps experienced a drastic reduction in their feeding efficiency, possibly as a result of clogging of their filtering apparatus. This triggered a dramatic reversal in the relationship, during which a dense phytoplankton bloom developed in conjunction with the collapse of the salp population. Increases in the biomass and geographic range of the tunicate S. thompsoni have occurred in several areas of the southern ocean, often in parallel with a rise in sea-surface temperature during sub-decadal periods of warming anomalies. Received: 10 August 1997 / Accepted: 21 October 1997  相似文献   

9.
Antarctic krill,Euphausia superba, often exhibit abnormal behavior in laboratory aquaria, usually hovering in a stationary position, unresponsive to most external stimuli. In the austral summer of 1985–1986 at Palmer Station on Anvers Island, Antarctica, we provided laboratory conditions which inducedE. superba to school in large aquaria. Captive krill swam horizontally and exhibited the full spectrum of behaviors normally displayed while schooling at sea. Schooling krill avoided visually contrasting stimuli, with avoidance distances correlated with stimulus size. Schools responded in qualitatively different ways to presentations of food, chemical compounds, and abrupt increases in light intensity. We describe the conditions necessary for aquarium schooling and discuss the importance of an appropriate social environment for displays of escape, avoidance, and feeding behaviors and of positional preference within the school.  相似文献   

10.
The phylogenetic relationships of the Antarctic krill Euphausia superba, the key species in the Antarctic food web, and other Antarctic and sub-Antarctic cuphausiids have been investigated using the 16S ribosomal mitochondrial gene. The phylogenetic reconstructions indicated that the Antarctic species form a monophyletic clade separated by the non-Antarctic species. The results revealed a large genetic divergence between the Antarctic (E. superba and E. crystallorophias) and sub-Antarctic species (E. vallentini). The time of separation between these species, estimated from the molecular data, is around 20 million years ago, which is comparable with the geological time of the formation of a circum-Antarctic water circulation and the Antarctic Polar Frontal Zone. The euphausiid molecular phylogeny therefore represents evidence for vicariant speciation.  相似文献   

11.
Antarctic krill (Euphausia superba) occupy a key position in the Southern Ocean linking primary production to secondary consumers. While krill is a dominant grazer of phytoplankton, it also consumes heterotrophic prey and the relative importance of these two resources may differ with ontogeny. We used stable isotope analyses to evaluate body size-dependent trophic and habitat shifts in krill during the austral summer around the South Shetland Islands, Antarctica. We found evidence for an asymmetric, ontogenetic niche expansion with adults of both sexes having higher and more variable δ15N values but consistent δ13C values in comparison with juveniles. This result suggests that while phytoplankton likely remains an important life-long resource, krill in our study area expand their dietary niche to include higher trophic food sources as body size increases. The broader dietary niches observed in adults may help buffer them from recent climate-driven shifts in phytoplankton communities that negatively affect larval or juvenile krill that rely predominately on autotrophic resources.  相似文献   

12.
The time course of faecal pellet production (egestion) was monitored in January 1985 for a population of Antarctic krill, Euphausia superba Dana, maintained in flowing seawater aquaria at Palmer Station, Antarctica. Following transfer to filtered seawater, krill produced faecal strings for roughly 40 min, after which time faecal egestion virtually ceased. Similar results were obtained for freshly-trawled krill at sea in February and March 1985. There were wide daily variations in total faecal egestion rate; mean rates varied from 0.54 to 1.66 mg dry wt h-1 and individual rates from 0.25 to 2.35 mg h-1 (all data corrected to a standard krill of 600 mg fresh weight). Despite these wide fluctuations in total faecal egestion, the loss of organic matter showed no significant daily variation, with a mean value of 0.13 mgh-1. The relationship between faecal egestion rate and faecal organic content suggested that feeding rate was governed by food quality; when inorganic load was high, feeding rate increased to ensure sufficient energy intake. The data suggest that superfluous feeding does not occur in krill and that values of gut-clearance time calculated from time intervals greater than about 40 min will not be representative of previous feeding history. the rates of faecal egestion observed in this study indicate that the flux of faecal pellets from krill is substantial. They imply an energy intake in E. superba of 17 to 28% body weight per day, much higher than estimated previously for this species by summing known energy losses, but similar to estimates for other euphausiids.  相似文献   

13.
Antarctic krill, Euphausia superba, hatched from eggs and maintained for four years, were sampled periodically for age-pigment analysis. Extractable pigments from the eye and eyestalk ganglia were quantified using fluorescence intensity and standardised against protein. Three peak fluorescence intensities were detected at wavelengths of excitation 280 nm, emission 625 nm (pigment 1); excitation 355 nm, emission 510 nm (pigment 2); and excitation 463 nm, emission 620 nm (pigment 3). There was a positive correlation between the quantity of pigments 1 and 3 and the age of Antarctic krill. A model was developed to predict age from pigment 3 and to compare it with other age proxies (carapace length and eyeball diameter). The quantity of pigment 3 was the best predictor of age. The pigment method can discriminate between similar sized krill aged 12 and 36 months. Age pigments provide an improved tool for age estimation in Antarctic krill, particularly if used in conjunction with other demographic information.  相似文献   

14.
Antarctic krill, Euphausia superba Dana, were sampled from 28 discrete swarms in a small area south west of Elphant Island, South Shetlands, over a period of 14 d (24 February-9 March 1985). Four biological characteristics of the krill (length, sex, moult, gut fullness) were examined in a study of variation between swarms. Analysis of these characteristics indicated extensive differences between swarms and no single characteristic, or combination of characteristics, emerged as consistently accounting for the observed heterogeneity. There was no relationship between the degree of heterogeneity and the physical or temporal proximity of swarms. The variability between even close swarms strongly suggests that swarms are the basic unit of organization of krill populations. This conclusion has important implications for sampling programmes aimed at estimating population parameters. Thus, in the population studied here, we calculate that it was necessary to sample 23 swarms to estimate mean length and 10 swarms to establish a reliable estimate for the proportion of females in the population.  相似文献   

15.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

16.
Fluoride in Antarctic marine crustaceans   总被引:2,自引:0,他引:2  
M. Sands  S. Nicol  A. McMinn 《Marine Biology》1998,132(4):591-598
The concentration of fluoride in the body parts of a range of Antarctic crustaceans from a variety of habits was examined with the aim of determining whether fluoride concentration is related to lifestyle or phylogenetic grouping. Euphausiids had the highest overall fluoride concentrations of a range of Antarctic marine crustaceans examined; levels of up to 5477 μg g−1 were found in the exoskeleton of Euphausia crystallorophias. Copepods had the lowest fluoride levels (0.87 μg g−1 whole-body); some amphipods and mysids also exhibited relatively high fluoride levels. There was no apparent relationship between the lifestyle of the crustaceans and their fluoride level; benthic and pelagic species exhibited both high and low fluoride levels. Fluoride was concentrated in the exoskeleton, but not evenly distributed through it; the exoskeleton of the head, carapace and abdomen contained the highest concentrations of fluoride, followed by the feeding basket and pleopods, and the eyes. The mouthparts of E.␣superba contained almost 13 000 μg F g−1 dry wt. Antarctic krill tail muscle had low levels of fluoride. After long-term (1 to 5 yr) storage in formalin, fluoride was almost completely lost from whole euphausiids. Received: 1 April 1998 / Accepted: 29 July 1998  相似文献   

17.
We conducted two ship-based surveys of the nearshore ecosystem north of Livingston Island, Antarctica during 2–10 February 2005. Between the two surveys, a low-pressure system (963 mbar) passed through the area providing the opportunity to measure ecosystem parameters before and after a near gale. A ship-based multiple-frequency acoustic-backscatter survey was used to assess the distribution and relative abundance of Antarctic krill (Euphausia superba). Net tows, hydrographic profiles, and meteorological data were collected to measure biological and physical processes that might affect the krill population. During the survey, the distribution and behavior of several krill predators [chinstrap penguins (Pygoscelis antarctica), cape petrels (Daption capense), and Antarctic fur seals (Arctocephalus gazella)] were measured from the vessel by visual observations. The survey encompassed an area of roughly 2,500 km2, containing two submarine canyons with one to the west and one to the east of Cape Shirreff, which had different abundances of krill and predators. Several aspects of the nearshore ecosystem changed after the near gale including: hydrography of the upper 100 m of the water column, phytoplankton biomass, the abundance and distribution of krill, and the distribution of some krill predators. Differences in these parameters were also measured between the two canyons. These changes in the physical and biological environment during the survey period are quantified and show that the ecosystem exhibited significant changes over relatively short spatial (tens of kilometers) and time (tens of hours) scales.  相似文献   

18.
D. Dietrich  H. Arndt 《Marine Biology》2000,136(2):309-322
 The structure of a benthic microbial food web and its seasonal changes were studied in the shallow brackish waters of the island of Hiddensee, northeastern Germany, at two sites in close proximity by monthly or bimonthly sampling from July 1995 to June 1996. Abundance and biomass of phototrophic and non-phototrophic bacteria, heterotrophic flagellates (HF) and ciliates as well as the biomass of microphytobenthos were determined in the upper 0.3 cm sediment layer. Abundance of organisms showed strong positive correlation with water temperature, with the exception of the bacteria. Non-phototrophic bacterial numbers ranged from 7 × 108 to 6.7 × 109 cells cm−3 and phototrophic bacterial abundance from 4 × 107 to 2.7 × 108. Heterotrophic protist abundance ranged from 8 × 103 to 104 × 103 ind cm−3 for HF and from 39 to 747 ind cm−3 for ciliates. The biomass partitioning demonstrated the primary importance of non-phototrophic bacteria (min. 0.83, max. 84.87 μg C cm−3), followed by the microphytobenthos (min. 1.32, max. 50.93 μg C cm−3). The heterotrophic protists contributed roughly the same fraction to the total microbial biomass, with the biomass of the HF being slightly higher (HF 0.23 to 1.76 μg C cm−3, ciliates 0.04 to 1.17 μg C cm−3). Taxonomic classification of the benthic HF revealed the euglenids to be the most important group in terms of abundance and biomass, followed by thaumatomastigids and kinetoplastids. Other important groups were apusomonads, cercomonads, pedinellids and cryptomonads. The structure of the HF assemblage showed strong seasonal changes with euglenids being the most abundant taxa in summer, while apusomonads and thaumatomastigids were predominant in winter. Similar to the pelagic microbial food web, benthic picophototrophic bacteria were occasionally abundant, and the feeding modes of heterotrophic protists exhibited a great variety (predominantly omnivores, bacterivores, herbivores or predators). Filter-feeding HF were of little importance. Contrary to the pelagic environment, a top-down control on total benthic bacterial numbers by HF seemed unlikely at the studied stations which were characterised by muddy sand. Received: 6 January 1999 / Accepted: 21 October 1999  相似文献   

19.
S. Kidwai  S. Amjad 《Marine Biology》2000,136(3):561-571
Zooplankton samples from the North Arabian Sea Environment and Ecosystem Research (NASEER) cruises were analyzed to determine the basic taxonomic composition, biomass (standing stock) and the total and copepod numeric abundance; these characteristics are discussed with reference to the different monsoon periods. Cruises carried out during March 1993 and May 1994, categorized as pre-southwest monsoon periods, and a cruise in December 1994, categorized as a northeast monsoon period, are discussed in detail. The biomass of January 1992 versus August 1992 and August 1992 versus March 1993 differed significantly (F = 6.44, P≤ 0.05). Ranges of highest and lowest biomass from each cruise are also given. Distinct “high” and “low” production areas of statistically significant difference (F = 12.67, P≤ 0.05) were observed. The “high” and “low” production areas were mobile and followed the surface wind circulation patterns (wind reversal pattern) during the northeast and southwest monsoon periods. Overall zooplankton showed a patchy distribution. The overall zooplankton abundance and total copepod counts differed significantly between the Cruises 3 versus 4 and 4 versus 5 (F = 15.67, P≤ 0.05 and F = 34.39, P≤ 0.05, respectively). There was no significant difference (P≥ 0.05) in biomass, between eutrophic and oligotrophic stations, suggesting no difference between near shore and offshore waters. Thirty-eight taxonomic groups were identified from the samples, with copepods being the most dominant group, followed by chaetognaths and siphonophores. Copepods constitute an average of 52.50 to 74.93% of the total zooplankton count and reach maxima of 92.14% of the total zooplankton count at the outset of the southwest monsoon (March 1993) and 91.39% at the outset of the active northeast monsoon (December 1994). Received: 27 February 1998 / Accepted: 8 October 1999  相似文献   

20.
In the Antarctic krill Euphausia superba two forms of the chitinolytic enzyme N-acetyl-β-d-glucosaminidase (NAGase, EC 3.2.1.52) have been described, previously identified as NAGase B and NAGase C. Here, we demonstrate the organ-specific distribution and physiological relevance of both forms using a polyclonal antibody preparation which allows them to be distinguished immunologically. While NAGase B was localized in the integument and displayed a pattern of activity related to the moult cycle, the activity of NAGase C was independent of the moult cycle and was predominantly found in the gastrointestinal tract. Accordingly, NAGase B played a significant role in chitin degradation during the krill's moult, whereas NAGase C participated in the digestion of chitin-containing dietary components. Chromatographic elution profiles of isolated organs confirmed the immunological results by displaying characteristic organ-specific patterns in NAGase activity. The molecular characteristics of the moulting form, NAGase B, may further indicate a vesicular transport of moulting enzymes from the epidermis into the ecdysial space. Based on our results we develop a hypothesis explaining the concurrent processes of simultaneous chitin degradation and chitin synthesis occurring during moult. Received: 30 December 1998 / Accepted: 23 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号