首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
地方性砷中毒地区环境砷暴露健康风险研究进展   总被引:2,自引:0,他引:2  
自然因素引起的环境高砷暴露及其健康效应,尤其是饮水型地方性砷中毒是砷污染健康风险评估的基础。总结地方性砷中毒在环境砷暴露的风险识别、暴露途径和暴露与健康效应关系研究中的作用基础上,指出了地方性砷中毒研究中仅强调了饮水污染,关注的暴露途径比较单一,因此,人体多途径联合砷暴露的健康风险评估过程存在较大的不确定性。我国是唯一存在饮水和燃煤2种自然环境高砷暴露的国家,是研究2种类型砷暴露异同的天然场地,然而目前环境高砷的暴露及其健康效应的研究均为独立研究,对燃煤型地方性砷中毒在呼吸链砷暴露风险评估中的作用重视不够。因此,通过开展两种环境砷暴露及其健康效应的综合比较研究,建立呼吸链暴露评估和暴露-健康效应模型,可以为人体多途径联合砷暴露的健康风险研究提供新的依据。  相似文献   

2.
砷中毒具有特异的皮肤损伤特征。为了研究燃煤型砷中毒病区高砷暴露、人体甲基化代谢能力与皮肤损伤患病风险之间的关系,在陕南典型燃煤型砷中毒村进行了皮肤损伤诊断和流行病学调查,采集尿样并分析总砷及形态砷含量,同时计算了用于表征人体砷甲基化代谢能力的指标包括尿中无机砷、一甲基砷和二甲基砷占总砷的百分含量(i As%、MMA%、DMA%),以及一甲基化率(PMI=MMA/i As)和二甲基化率(SMI=DMA/MMA)。Logistic回归分析结果表明:尿总砷含量(UTAs)是砷致皮肤损伤的危险因素(OR=1.038,95%CI:1.003~1.073),二甲基砷百分含量和SMI是皮肤损伤的保护因素(OR=0.883,95%CI:0.798~0.976;OR=0.724,95%CI:0.535~0.978);且砷致皮肤损伤的危险度随砷暴露水平的增高和甲基化能力的降低而增大。  相似文献   

3.
中国饮水型砷中毒区的水化学环境与砷中毒关系   总被引:3,自引:0,他引:3  
中国各饮水型砷中毒区的水化学特点受沉积环境和气候因素所控制,砷中毒的流行和发病程度与其地下水的水化学环境、水中砷的形态和价态有密切联系。在实地考察监测和对台湾、新疆、内蒙古、山西、吉林饮水型砷中毒病区环境和地下水水化学特征总结的基础上,系统分析了饮水水源中总As、As(III)、甲基胂、腐植酸与砷中毒的关系,揭示了不同病区病情差异的原因。研究表明,除台湾外,各砷中毒区均分布在干旱半干旱区;各病区多分布在沉积盆地中心或平原内相对低洼的地带,饮用的地下水均取自中新生代地层;砷中毒病情不仅与总砷含量有明显的剂量-效应关系,还与As(III)和甲基胂的浓度直接相关。台湾、内蒙古和山西病区地下水为富含有机质的复杂还原环境,水中不仅As(III)含量高,且检出有机物、腐植酸和甲基胂,新疆和吉林病区地下水为以无机砷中As(V)为主的氧化环境,吉林病区未检测出甲基胂,这是新疆与吉林病区患病率较低的主要原因。研究成果可为区域防病改水、砷中毒的预报提供重要技术支撑。  相似文献   

4.
污染土壤中铅、砷的生物可给性研究进展   总被引:12,自引:0,他引:12  
崔岩山  陈晓晨  付瑾 《生态环境》2010,19(2):480-486
土壤铅、砷污染已成为重要的环境问题,并可对人体健康造成严重危害。对食物链途径的有效控制使得从口部无意摄入的土壤铅、砷对人体,特别是对儿童铅、砷摄入总量的贡献率越来越大,甚至成为主要来源。土壤中铅、砷直接进入人体的消化系统并可被人体胃肠道溶解出的部分称为其生物可给性。有效、准确地判定土壤中铅、砷的生物可给性已经成为解决儿童铅、砷中毒的关键科学问题。因此,有关土壤中铅、砷的生物可给性及其在人体健康风险评价中的应用受到了越来越多的关注。文章综述了污染土壤中铅、砷生物可给性的研究方法及各方法的优缺点,并从土壤性质、模拟胃肠条件等方面分析了影响土壤中铅、砷生物可给性的主要因素和存在的问题,还进一步论述了土壤中铅、砷生物可给性在人体健康风险评价中的应用。最后,提出了今后该领域应重点加强土壤铅、砷生物可给性的标准参考物、模拟胃肠条件的优化以及土壤铅、砷生物可给性在人体健康风险评价中的应用等方面的研究。以期充分发挥铅、砷等环境污染物的生物可给性研究方法的潜力,更好地为控制土壤污染、保护人类健康服务。  相似文献   

5.
以陕南燃煤型砷中毒病区的5个自然村为调查采样点,通过现场流行病学调查和环境样品的分析测定,分析砷暴露人群的砷暴露途径,估算各暴露途径(呼吸、饮水和食物)的暴露剂量及对总暴露的贡献率,探讨引发燃煤型地方性砷中毒发病的最低有效暴露剂量。研究结果表明,除对照村外,采暖季各村的烤火间和卧室空气砷含量均有不同程度的超标,水和粮食未受燃煤砷污染。在采暖季,高砷煤燃烧污染的空气是人群砷暴露的主要来源;在非采暖季消化道砷暴露是各村的主要摄砷途径;提示消化道暴露对累积砷暴露的贡献不容忽视。结合问卷调查和流行病学调查结果,估算陕南病区引发燃煤型砷中毒的最低累积暴露剂量在1 712 mg左右。  相似文献   

6.
以陕南燃煤型砷中毒病区的5个自然村为调查采样点,通过现场流行病学调查和环境样品的分析测定,分析砷暴露人群的砷暴露途径,估算各暴露途径(呼吸、饮水和食物)的暴露剂量及对总暴露的贡献率,探讨引发燃煤型地方性砷中毒发病的最低有效暴露剂量。研究结果表明,除对照村外,采暖季各村的烤火间和卧室空气砷含量均有不同程度的超标,水和粮食未受燃煤砷污染。在采暖季,高砷煤燃烧污染的空气是人群砷暴露的主要来源;在非采暖季消化道砷暴露是各村的主要摄砷途径;表明消化道暴露对累积砷暴露的贡献不容忽视。结合问卷调查和流行病学调查结果,估算陕南病区引发燃煤型砷中毒的最低累积暴露剂量在1 712 mg左右。  相似文献   

7.
砷污染在全世界已逐渐成为一个严峻的环境问题,砷污染地区农作物中砷的超量累积是砷流入人体最主要的途径之一,研究农作物对砷的累积特征及其耐受机制对如何减少砷在可食植物中的积累有着重要的意义。砷是植物非必需元素且对植物有很大的毒性,不同形态与价态的砷在环境中的迁移转化规律和对生物的毒性、可利用性也是不同的。农作物中的砷含量不仅与环境中砷的含量、形态有关,还与植物自身的特性有关;砷在较低浓度下会促进农作物的生长,这可能是砷处理杀死了危害植物的病菌而有利于植物的生长或是砷通过影响其他元素的吸收而间接促进植物的生长,高浓度砷则表现出对植物生长的抑制作用;植物对砷和磷、硅的吸收存在明显的竞争,增加土壤中磷、硅的供应可以有效减少农作物对砷的吸收;砷进入植物体后,植物可以通过砷还原、络合、隔离、甲基化等作用来降低砷毒性,提高植物对砷的耐受性。然而,由于农作物对砷的吸收、抗逆机制比较复杂,其对砷的具体还原机制、植物体内甲基砷的来源及其影响因素等,仍将是今后该领域的研究热点。  相似文献   

8.
咖啡酸-O-甲基转移酶(COMT)是苯丙烷类代谢途径中的一个关键酶,研究其密码子偏好性对开展该基因的异源表达与分子调控研究有重要指导意义.利用Codon W、EMBOSS、SPSS与Origin等在线服务器及软件,首先分析川芎等不同植物来源COMT基因的密码子偏好性,随后以川芎COMT为重点,比较其与大肠杆菌、酵母、拟南芥与烟草等模式生物的密码子使用频率.结果表明,单子叶植物COMT基因的密码子偏好性较强,而低等植物与双子叶植物COMT基因的密码子偏好性较弱.分析COMT基因密码子偏好性与核酸序列,发现亲缘关系较近的物种不仅具有较高的核酸序列相似度,并且具有相似的密码子偏好性,推测这种现象是由于密码子偏好性的形成主要受到自然选择的影响. COMT作为一个起源古老的基因,分析其密码子偏好性对了解植物进化关系有一定作用.川芎COMT体现出与其他双子叶植物相近的密码子偏好性,其GC含量与GC3s均小于50%,偏好以A/T编码,偏好性极强(RSCU 2)的密码子有7个,ENc为51.38,整体密码子偏好性较弱.与大肠杆菌相比较,酵母可能是其更好的外源表达系统.较之拟南芥,烟草更合适作为川芎COMT的遗传转化受体.本研究表明拟南芥、烟草都可作为Lc COMT遗传转化受体系统的候选;并且烟草COMT与Lc COMT在进化树上显示出较近的亲源关系,所以烟草可能是LCCOMT相对更好的遗传转化受体;结果可为COMT基因的遗传进化研究、川芎COMT的功能验证及转基因植物培育等奠定理论基础.(图4表2参33)  相似文献   

9.
无机砷在植物和微生物体内的代谢机制研究进展   总被引:2,自引:2,他引:0  
砷污染是全球的热点问题之一.土壤中的无机砷在植物中的积累可通过食物链传递,从而对人体健康构成严重威胁.了解微生物和植物对无机砷的代谢机制,对认识和控制土壤中砷的风险至关重要.近年来,微生物对无机砷的代谢机制研究已经比较深入,但是仍有一些问题亟待解决,如信号传导、抗砷基因筛选等.在植物对无机砷的摄取、还原机制等方面也取得了一定进展,但是植物体内砷的转运机制、排出机制等仍有待进一步研究.论文综述了微生物、植物体内无机砷的代谢过程中,砷摄取、转运、还原和排出机制的最新进展,并对今后的研究方向进行了展望.  相似文献   

10.
流行病学结果显示慢性砷暴露可导致人群罹患皮肤癌、膀胱癌、肺癌等恶性疾病,但其致毒/癌机制尚不明确.目前关于砷暴露致毒/癌机理的讨论主要集中在砷的胞内作用途径,而较少关注砷摄入调控过程对其暴露致毒/癌的贡献.在生理条件下,部分砷化合物由于结构与磷酸根、葡萄糖、甘油等天然底物相近,可借由相应的载体被细胞摄入,摄入途径和效率存在显著的砷形态依赖性.此外,砷化合物的生物毒性效应与其赋存形态直接相关.可见,砷的摄入调控对于砷的暴露致毒/癌具有重要作用.本文主要综述了在哺乳动物体系中不同砷形态的摄入载体、载体调控及对应的砷摄入分布、效率和暴露毒性,在此基础上,强调了以往在砷致毒/癌机制研究中被忽视的砷摄入调控途径.然而,砷摄入调控过程中的诸多重要环节如砷胁迫下的摄入启动和调控机制等都是空白,需进一步系统深入地研究,为深入理解砷的致毒机制提供了新的视角和研究思路.  相似文献   

11.
The disposition and toxicity of the metalloid, arsenic, is affected by its oxidation state and on the extent to which it is converted to methylated species. Given that these chemical modifications influence the fate and action of arsenic, new research efforts should be directed both towards elucidating the molecular processes involved in the metabolism of arsenic and in characterising interindividual variation in capacity for processes such as the methylation of arsenic. This information will contribute to a better understanding of the mechanisms of arsenic toxicity and carcinogenicity and to a better assessment of the hazards associated with chronic exposure to this agent.  相似文献   

12.
This study was undertaken to ascertain optimal methods of sampling, preserving, separating, and analyzing arsenic species in potentially contaminated waters. Arsenic species are readily transformed in nature by slight changes in conditions. Each species has a different toxicity and mobility. The conventional field sampling method using filters of 0.45 μm in size could overestimate the dissolved arsenic concentrations, as passing suspended particles that can act as a sink or source of arsenic depending on the site condition. For arsenic species in neutral pH and iron-poor waters, the precipitation can be stable for up to 3 days without any treatment, but for longer periods, a preservative, such as phosphoric acid, is required. Also, the analytical procedure must be selected carefully because the levels and hydride generation efficiencies of arsenic in different species can vary, even for the same amount of arsenic. For arsenic speciation in samples that also include organic species, a hybrid high-performance liquid chromatography (HPLC) column and inductively coupled plasma mass spectrometry (ICP-MS) gave the best resolution and lowest detection limits. However, the procedure using a solid phase extraction (SPE) cartridge can be used economically and conveniently for analyzing samples containing only inorganic arsenic species, such as groundwater, especially that related to mine activity.  相似文献   

13.
Realgar transforming solution is an arsenic formulation which has shown anticancer effects with low toxicity both in vivo and in vitro. In this study, Caenorhabditis elegans was used to evaluate its reproductive toxicity and its possible mechanisms. Realgar transforming solution decreased the brood size and induced proliferation arrest and apoptosis significantly only at an elemental concentration of 37.5 mg/L, while arsenic trioxide reduced the brood sizes and induced proliferation arrest and apoptosis of both the wild type N2 and let-60 ras(gf) mutant worms in an arsenic concentration dependent manner. Mitogen-activated protein kinase and protein p53 pathways may be involved in reproductive toxicity as evidenced by real-time quantitative polymerase chain reaction, RNA interference, and inhibition experiments with mitogen-activated protein kinases and p53. In conclusion, realgar transforming solution at the low arsenic (As) concentrations showed lower reproductive toxicity than arsenic trioxide, and a different molecular mechanism of reproductive toxicity is suggested.  相似文献   

14.
Because behavioral variation within and among populations may result from ecological, social, genetic and phenotypic differences, identifying the mechanism(s) responsible is challenging. Observational studies typically examine social learning by excluding ecological and genetic factors, but this approach is insufficient for many complex behaviors associated with substantial environmental variation. Indian Ocean bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia show individual differences in foraging tactics, including possible tool use with marine sponges and social learning may be responsible for this diversity. However, the contributions of ecological factors to the development of these foraging tactics were not previously investigated. Here, we determined the relationship between ecological variables and foraging tactics and assessed whether differences in habitat use could explain individual differences in foraging tactics. We monitored 14 survey zones to identify how foraging tactics were spatially distributed and matched behavioral data to the ecological variables within each zone. Three of four foraging tactics were significantly correlated with ecological characteristics such as seagrass biomass, water depth, presence of marine sponges and season. Further, individual differences in habitat use were associated with some tactics. However, several tactics overlapped spatially and previous findings suggest demographic and social factors also contribute to the individual variation in this population. This study illustrates the importance of environmental heterogeneity in shaping foraging diversity and shows that investigating social learning by ruling out alternative mechanisms may often be too simplistic, highlighting the need for methods incorporating the relative contributions of multiple factors.  相似文献   

15.
This paper describes risk assessment methods for two chronic exposure pathways involving arsenic contaminated soil, namely inhalation of fugitive dust emissions over a lifetime, and inadvertent soil/house dust ingestion. The endpoint in the first case is assumed to be lung cancer and in the second case skin cancer. In order to estimate exposures, inhalation rates and soil/dust ingestion rates are estimated for different age groups; indoor/outdoor time budgets for different age groups are developed; and indoor surface dust and air arsenic concentrations are estimated based on outdoor concentration measurements. Differences observed in indoor/outdoor ratios and arsenic containing dust particle size among different types of communities are noted, as well as possible relationship of particle size to bioavailability. Calculations of risk are presented using cancer potency factors developed by the U.S. Environmental Protection Agency, and uncertainties in these toxicity estimates are described based on: (1) evidence that arsenic may be neither a cancer initiator nor promotor, but may act instead as a late stage carcinogen and (2) evidence that the arsenic dose-response relationship for ingestion may be nonlinear at low doses due to increasing methylation of inorganic arsenic. The first of these considerations influences the relative importance ascribed to arsenic doses in different age groups. The latter consideration indicates that the risk estimates described here are probably very conservative.  相似文献   

16.
Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape.  相似文献   

17.
It is thought that genetic variation can affect the persistence of a population through its influence on disease susceptibility. We assessed genome-wide genetic variation, variation at a locus involved in the immune system, and acceptance or rejection of skin grafts in three natural populations of the pocket gopher ( Thomomys bottae ). Multilocus DNA fingerprints confirmed previous allozyme data, revealing high levels of variation among Hastings Reserve pocket gophers and almost complete within-population identity for individuals from the two Patricks Point populations (Patricks J and Patricks F), although Patricks J animals were dissimilar to animals from Patricks F despite their proximity. Individuals from the high-variation population consistently rejected within-population reciprocal skin grafts, whereas Patricks J and Patricks F individuals accepted within-population grafts. Patricks J and Patricks F individuals were found to be immunocompetent, however, as revealed by the ability of all individuals to reject between-population grafts, including those that previously accepted within-population grafts. A DNA heteroduplex analysis was then used to directly characterize variability at DQα, a locus of the immune system's major histocompatability complex. Both populations low in genetic variation were fixed for unique DQα alleles, whereas observed heterozygosity in the Hastings population was 0.43, ascribable to at least three unique alleles. These data are in accord with previous cheetah skin-graft results and confirm that skin grafts can be used to assess genetic similarity. We suggest that although many animal populations can persist with extremely low levels of genetic variation in the wild, such populations may be at a greater risk of extinction from particular pathogens because of their genetic uniformity.  相似文献   

18.
Variations in the relative contributions of gene flow and spatial and temporal variation in recruitment are considered the major determinants of population genetic structure in marine organisms. Such variation can be assessed through repeated measures of the genetic structure of a species over time. To test the relative importance of these two phenomena, temporal variation in genetic composition was measured in the limpet Cellana grata, among four annual cohorts over 10 years at four rocky shores in Hong Kong. A total of 408 limpets, comprising individuals from 1998, 1999, 2006 and 2007 cohorts were screened for genetic variation using five microsatellite loci. Minor but significant genetic differentiation was detected among samples from the 1998/1999 collection (F ST = 0.0023), but there was no significant differentiation among the 2006/2007 collection (F ST = 0.0008). Partitioning of genetic variation among shores was also significant in 1998/1999 but not in the 2006/2007 collection, although there was no correlation between genetic and geographic distances. There was no significant difference between collections made in 1998/1999 and 2006/2007. This lack of clear structure implies a high level of gene flow, but differentiation with time may be the result of stochastic recruitment variation among shores. Estimates of effective population size were not high (599, 95% C.L. 352–11397), suggesting the potential susceptibility of the populations to genetic drift, although a significant bottleneck effect was not detected. These findings indicate that genetic structuring between populations of C. grata in space and time may result from spatio-temporal variation in recruitment, but the potential development of biologically significant differentiation is suppressed by a lack of consistency in recruitment variability and high connectivity among shores.  相似文献   

19.
Abstract: Genetic diversity is expected to decrease in small and isolated populations as a consequence of bottlenecks, founder effects, inbreeding, and genetic drift. The genetics and ecology of the rare perennial plant Lychnis viscaria (Caryophyllaceae) were studied in both peripheral and central populations within its distribution area. We aimed to investigate the overall level of genetic diversity, its spatial distribution, and possible differences between peripheral and central populations by examining several populations with electrophoresis. Our results showed that the level of genetic diversity varied substantially among populations (  H exp = 0.000–0.116) and that the total level of genetic diversity (mean H exp = 0.056) was low compared to that of other species with similar life-history attributes. The peripheral populations of L. viscaria had less genetic variation (mean H exp = 0.034) than the central ones (0.114). Analysis of genetic structure suggested limited gene flow (mean F ST = 0.430) and high differentiation among populations, emphasizing the role of genetic drift (  N e m = 0.33). Isolation was even higher than expected based on the physical distance among populations. We also focused on the association between population size and genetic diversity and possible effects on fitness of these factors. Population size was positively correlated with genetic diversity. Population size and genetic diversity, however, were not associated with fitness components such as germination rate, seedling mass, or seed yield. There were no differences in the measured fitness components between peripheral and central populations. Even though small and peripheral populations had lower levels of genetic variation, they were as viable as larger populations, which emphasizes their potential value for conservation.  相似文献   

20.
Heavy metals are toxic substances released into the environment, contributing to a variety of toxic effects on living organisms in food chain by accumulation and biomagnifications. Certain pollutants such as arsenic (As) remain in the environment for an extensive period. They eventually accumulate to levels that could harm physiochemical properties of soils and lead to loss of soil fertility and crop yield. Arsenic, when not detoxified, may trigger a sequence of reactions leading to growth inhibition, disruption of photosynthetic and respiratory systems, and stimulation of secondary metabolism. Plants respond to As toxicity by a variety of mechanisms including hyperaccumulation, antioxidant defense system, and phytochelation. Arbuscular mycorrhizae symbiosis occurs in almost all habitats and climates, including disturbed soils. There is growing evidence that arbuscular mycorrhizae fungi may alleviate metal/metalloid toxicity to host plant. Here, we review (1) arsenic speciation in the environment and how As is taken up by the roots and metabolised within plants, and (2) the role of arbuscular mycorrhizae in alleviating arsenic toxicity in crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号