首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L?1, respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.  相似文献   

2.
3.
The occurrence of antihistamines in sewage waters and in recipient rivers   总被引:2,自引:1,他引:1  
Background, aim and scope  Each year, large quantities of pharmaceuticals are consumed worldwide for the treatment and prevention of human and animal diseases. Although the drugs and the metabolites observed in the wastewaters and in the environment are present at concentrations several orders of magnitude lower than the concentrations required to exert their effects in humans or animals, their long-term impact on the environment is commonly not known. In this study, the occurrence of six antihistamines, which are used for the relief of allergic reactions such as hay fever, was determined in sewage treatment plants wastewaters and in recipient river waters. Materials and methods  The occurrence of the antihistamines cetirizine, acrivastine, fexofenadine, loratadine, desloratadine and ebastine in sewage treatment plants wastewaters and in recipient river waters was studied. The analytical procedure consisted of solid-phase extraction of the water samples followed by liquid chromatography separation and detection by a triple-quadrupole mass spectrometer in the multiple reaction mode. Results  Cetirizine, acrivastine and fexofenadine were detected in both influent and effluent wastewater samples at concentration levels ranging from about 80 to 220 ng/L, while loratadine, desloratadine and ebastine could not be detected in any samples. During sewage treatment, the concentration of the antihistamines dropped by an average of 16–36%. Furthermore, elevated concentrations of antihistamines were observed in samples collected during the season of most intensive plant pollen production, i.e. in May. In the river water samples, the relative pattern of occurrence of cetirizine, acrivastine and fexofenadine was similar to that in the wastewater samples; although the concentration of the compounds was substantially lower (4–11 ng/L). The highest concentrations of the studied drugs were observed near the discharging point of the sewage treatment plant. Discussion  The highest concentrations of antihistamines in STP wastewaters correlate with the outbreak of allergic reaction caused by high amounts of plant pollens in the air. The analysis results of the river water samples show that the antihistamines are carried far away from the effluent discharge points. They may account for a part of the mix of pharmaceuticals and of pharmaceutical metabolites that occur downstream of STPs. Conclusions  Antihistamines are poorly degraded/eliminated under the biological treatment processes applied in the wastewater treatment plants and, consequently, they are continuously being discharged along with other drugs to the aquatic environment. Recommendations and perspectives  As a huge quantity and variety of drugs and their metabolites are continuously discharged to rivers and the sea, the compounds should be considered as contaminants that may possess risks to the aquatic ecosystem. Further studies are urgently needed on the environmental fate of the antihistamines and other pharmaceuticals in the aquatic environment. These studies should be concerned with the stability of the compounds, their transformation reactions and the identity of the transformation products, the distribution of drugs and their uptake and effects in organisms. On the basis of these studies, the possible environmental hazards of pharmaceuticals may be assessed.  相似文献   

4.
Zhang Y  Geissen SU  Gal C 《Chemosphere》2008,73(8):1151-1161
In the aquatic environment, pharmaceuticals have been widely found. Among them, carbamazepine and diclofenac were detected at the highest frequency. To evaluate the worldwide environmental impacts of both drugs, their global consumption volumes are estimated, based on the dose per capita. The metabolites of these pharmaceuticals are also of environmental concerns, especially trans-10,11-dihydro-10,11- dihydroxycarbamazepine (CBZ-diol) which probably has a similar concentration in water bodies to that of its parent drug. The removal efficiencies and mechanisms of both drugs in the wastewater treatment plants (WWTPs) are discussed with the actual state of knowledge. The occurrences of both drugs are examined in various water bodies including WWTP effluents, surface waters, groundwater and drinking water. Their chemical, physical and pharmacological properties are also addressed in context, which can largely influence their environmental behaviors. The ecotoxicological studies of both drugs imply that they do not easily cause acute toxic effects at their environmental concentrations. However their chronic effects need cautious attention.  相似文献   

5.
K Kümmerer 《Chemosphere》2001,45(6-7):957-969
After administration, pharmaceuticals are excreted by the patients into wastewater. Unused medications are sometimes disposed of in drains. The drugs enter the aquatic environment and eventually reach drinking water if they are not biodegraded or eliminated during sewage treatment. Additionally, antibiotics and disinfectants are supposed to disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of STPs by the antibiotic substances present. Recently, pharmaceuticals have been detected in surface water, ground water and drinking water. However, only little is known about the significance of emissions from households and hospitals. A brief summary of input by different sources, occurrence, and elimination of different pharmaceutical groups such as antibiotics, anti-tumour drugs, anaesthetics and contrast media as well as AOX resulting from hospital effluent input into sewage water and surface water will be presented.  相似文献   

6.
7.
In this report, we refer to pharmaceuticals that are widespread in the urban aquatic environment and that mainly originate from wastewater treatment plants or non-point source sewage as “wastewater-marking pharmaceuticals” (WWMPs). To some extent, they reflect the condition or trend of water contamination and also contribute to aquatic environmental risk assessment. The method reported here for screening typical WWMPs was proposed based on academic concerns about them and their concentrations present in the urban aquatic environment, as well as their properties of accumulation, persistence, eco-toxicity and related environmental risks caused by them. The screening system consisted of an initial screening system and a further screening system. In the former, pharmaceuticals were categorised into different evaluation levels, and in the latter, each pharmaceutical was given a normalised final evaluation score, which was the sum of every score for its properties of accumulation, persistence, eco-toxicity and environmental risk in the aquatic environment. The system was applied to 126 pharmaceuticals frequently detected in the aquatic environment. In the initial screening procedure, five pharmaceuticals were classified into the “high” category, 16 pharmaceuticals into the “medium” category, 15 pharmaceuticals into the “low” category and 90 pharmaceuticals into the “very low” category. Subsequently, further screening were conducted on 36 pharmaceuticals considered as being of “high”, “medium” and “low” categories in the former system. We identified 7 pharmaceuticals with final evaluation scores of 1–10, 10 pharmaceuticals with scores of 11–15, 15 pharmaceuticals with scores from 16 to 20 and 4 pharmaceuticals with scores above 21. The results showed that this screening system could contribute to the effective selection of target WWMPs, which would be important for spatial-temporal dynamics, transference and pollution control of pharmaceuticals in the urban aquatic environment. However, there remains a number of pharmaceutical parameters with measured data gaps, such as organic carbon adsorption coefficients and bioconcentration factors, which, if filled, would improve the accuracy of the screening system.  相似文献   

8.
A first review on occurrence and distribution of pharmaceuticals and personal care products (PPCPs) is presented. The literature survey conducted here was initiated by the current Assessment of the Arctic Monitoring and Assessment Programme (AMAP). This first review on the occurrence and environmental profile of PPCPs in the Arctic identified the presence of 110 related substances in the Arctic environment based on the reports from scientific publications, national and regional assessments and surveys, as well as academic research studies (i.e., PhD theses). PPCP residues were reported in virtually all environmental compartments from coastal seawater to high trophic level biota. For Arctic environments, domestic and municipal wastes as well as sewage are identified as primary release sources. However, the absence of modern waste water treatment plants (WWTPs), even in larger settlements in the Arctic, is resulting in relatively high release rates for selected PPCPs into the receiving Arctic (mainly) aquatic environment. Pharmaceuticals are designed with specific biochemical functions as a part of an integrated therapeutically procedure. This biochemical effect may cause unwanted environmental toxicological effects on non-target organisms when the compound is released into the environment. In the Arctic environments, pharmaceutical residues are released into low to very low ambient temperatures mainly into aqueous environments. Low biodegradability and, thus, prolonged residence time must be expected for the majority of the pharmaceuticals entering the aquatic system. The environmental toxicological consequence of the continuous PPCP release is, thus, expected to be different in the Arctic compared to the temperate regions of the globe. Exposure risks for Arctic human populations due to consumption of contaminated local fish and invertebrates or through exposure to resistant microbial communities cannot be excluded. However, the scientific results reported and summarized here, published in 23 relevant papers and reports (see Table S1 and following references), must still be considered as indication only. Comprehensive environmental studies on the fate, environmental toxicology, and distribution profiles of pharmaceuticals applied in high volumes and released into the Nordic environment under cold Northern climate conditions should be given high priority by national and international authorities.  相似文献   

9.
Intensive land development as a result of the rapidly growing tourism industry in the “Riviera Maya” region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region.  相似文献   

10.
An extensive study on the presence of illicit drugs and pharmaceuticals with potential for abuse in sewage waters was made for the first time in the Netherlands. A total number of 24 target drugs were investigated in influent and effluent wastewater using liquid chromatography coupled to a high resolution Orbitrap mass spectrometer. This powerful analyzer has allowed not only the detection and identification of the compounds under investigation, but also their quantification at very low levels, which is highly innovative in the field of drugs of abuse. Samples were taken from five sewage treatment plants (STPs) during a whole week. The selected STPs served four cities of different size and an international airport. Daily variances of drug loads were demonstrated and removal efficiencies calculated for each drug and STP individually. Twelve target compounds were found in at least one influent or effluent, and highest concentrations were observed in influents collected from more urbanized areas. The compounds more frequently detected were amphetamine, benzoylecgonine, cocaine and THCCOOH together with the pharmaceuticals codeine, oxazepam and temazepam. Established week trends in consumption of drugs showed distinct differences between individual drugs. A slightly different occurrence pattern was observed in wastewaters from the airport. Thus, methamphetamine was only detected at Schiphol, a fact that was interpreted to be caused by consumption of this drug by travelers. Despite the fact that the Netherlands has frequently been criticized for its liberal drug policy the results from this study did not reveal higher drug consumption than found elsewhere, with the exception of cannabis.  相似文献   

11.
Lin AY  Yu TH  Lin CF 《Chemosphere》2008,74(1):131-141
This is a comprehensive study of the occurrence of antibiotics, hormones and other pharmaceuticals in water sites that have major potential for downstream environmental contamination. These include residential (hospitals, sewage treatment plants, and regional discharges), industrial (pharmaceutical production facilities), and agricultural (animal husbandries and aquacultures) waste streams. We assayed 23 Taiwanese water sites for 97 targeted compounds, of which a significant number were detected and quantified. The most frequently detected compounds were sulfamethoxazole, caffeine, acetaminophen, and ibuprofen, followed closely by cephalexin, ofloxacin, and diclofenac, which were detected in >91% of samples and found to have median (maximum) concentrations of 0.2 (5.8), 0.39 (24.0), 0.02 (100.4), 0.41 (14.5), 0.15 (31.4), 0.14 (13.6) and 0.083 (29.8) microg/L, respectively. Lincomycin and acetaminophen had high measured concentrations (>100 microg/L), and 35 other pharmaceuticals occurred at the microg/L level. These incidence and concentration results correlate well with published data for other worldwide locations, as well as with Taiwanese medication usage data, suggesting a human contamination source. Many pharmaceuticals also occurred at levels exceeding predicted no-effect concentrations (PNEC), warranting further investigation of their occurrence and fate in receiving waters, as well as the overall risks they pose for local ecosystems and human residents. The information provided here will also be useful for development of strategies for regulation and remediation.  相似文献   

12.
Pharmaceutical concentration data for Indian surface waters are currently scarce. Sewage often enters Indian rivers without prior treatment, and so previously reported environmental concentrations from regions with routinely implemented sewage treatment cannot simply be used to predict concentrations in Indian surface water. Improved knowledge of pharmaceutical concentrations in Indian waters would enable determination of potential risks posed to aquatic wildlife and human health in this region. The concentrations of five common non-steroidal anti-inflammatory drugs (NSAIDs; diclofenac, ketoprofen, naproxen, ibuprofen, and acetylsalicylic acid) were determined in surface waters from 27 locations of the Kaveri, Vellar, and Tamiraparani Rivers in southern India. The samples were extracted by solid-phase extraction and analyzed by GC-MS. The measured concentrations of four of the five drugs in this reconnaissance were relatively similar to those reported elsewhere (ND–200 ng/l); however, acetylsalicylic acid, the most readily degradable of the investigated drugs, was found at all sites and at considerably higher concentrations (up to 660 ng/l) than reported in European surface waters. This is the first report on the occurrence of NSAIDs in Indian rivers. The finding of elevated concentrations of acetylsalicylic acid is most likely a result of direct discharges of untreated sewage. Therefore, readily degradable pharmaceuticals may present larger concern in regions without consistent sewage treatment. Based on measured environmental concentrations, the risks of direct toxicity to aquatic wildlife and of humans consuming the water are discussed.  相似文献   

13.
Pharmaceuticals in the river Elbe and its tributaries   总被引:13,自引:0,他引:13  
Medicinal drugs were found to be ubiquitous in the river Elbe, its tributary the river Saale and in other tributaries at their points of entry into the Elbe. The distribution of concentration peaks along the investigated river stretches provides an indication that they are mainly due to the emission of treated waste water from municipal sewage treatment works. This leads to the conclusion that medicinal substances can be regarded as faecal indicators for water pollution caused by human activity. The main substances found in the Elbe in 1998 were diclofenac, ibuprofen and carbamazepine as well as various antibiotics and lipid regulators in the concentration range of <20-140 ng/l. The more thorough investigations carried out in 1999 and 2000 show that in addition to the drugs (phenazone, isopropyl-phenazone and paracetamol) metabolite concentrations contributed significantly to the total concentration of pharmaceuticals in the Elbe. The metamizole metabolites N-acetyl-4-aminoantipyrine (AAA) and N-formyl-4-aminoantipyrine (FAA) were found in concentrations from <20 to 939 ng/l. A multivariate statistical analysis revealed a high correlation in respect of the distribution of persistent substances. The metoprolol distribution throughout the Saale demonstrated that the tributaries cause either an increase (Weisse Elster, Unstrut, Ilm) or a reduction (Wipper, Bode) in the concentration, depending on the respective load of waste water. Wide scale sampling in Saxony during 2002 showed the ubiquitous occurrence of carbamazepine in surface waters. The ecotoxicological effects of this contamination cannot be assessed at present. This is due to the fact that no legal framework in respect of these medicinal drugs for human consumption has been established and therefore little research and no risk assessment has been carried out. Therefore it is urgently necessary to include at least the quantitatively most significant substances in the new assessment concept of the EC White Paper.  相似文献   

14.

Background, aim, and scope  

Anti-tumour agents and their metabolites are largely excreted into effluent, along with other pharmaceuticals. In the past, investigations have focused on the input and analysis of pharmaceuticals in surface and ground water. The two oxazaphosphorine compounds, cyclophosphamide and ifosfamide are important cytostatic drugs used in the chemotherapy of cancer and in the treatment of autoimmune diseases. Their mechanism of action, involving metabolic activation and unspecific alkylation of nucleophilic compounds, accounts for genotoxic and carcinogenic effects described in the literature and is reason for environmental concern. The anti-tumour agents cyclophosphamide (CP) and ifosfamide (IF) were not biodegraded in biodegradation tests. They were not eliminated in municipal sewage treatment plants. Degradation by photochemically formed HO radicals may be of some relevance only in shallow, clear, and nitrate-rich water bodies but could be further exploited for elimination of these compounds by advanced oxidation processes, i.e. in a treatment of hospital waste water. Therefore, CP and IF are assumed to persist in the aquatic environment and to enter drinking water via surface water. The risk to humans from input of CP and IF into surface water is not known.  相似文献   

15.
16.
The occurrence of pharmaceuticals in the aquatic environment has become a matter of concern in the last decade due to potential risks posed to non-target organisms and the potential for unintended human exposure via food chain. This concern has been driven by a high detection frequency for drugs in environmental samples; these substances are produced in large quantities and are used in both veterinary and human medicine, leading to deposition and potential effects in the environment. However, few studies have focused on the presence of pharmaceuticals in rural areas associated with farming activities in comparison to urban areas. The aim of this study is to investigate the occurrence of pharmaceutically active compounds in surface waters collected from urban and rural areas in northwestern Spain. A monitoring study was conducted with 312 river water samples analysed by high-performance liquid chromatography coupled to tandem mass spectrometry. Positive detection of pharmaceuticals was made for 51 % of the samples. Decoquinate, sulfamethazine, sulfamethoxypyridazine and trimethoprim were the drugs most frequently detected, being present in more than 10 % of the samples. The sampling sites located downstream of the discharge points for wastewater treatment plants yielded the highest number of positive samples, 13 % of the positive samples were detected in these sites and 38 % of the samples collected near the collection point of a drinking water treatment plant were positive.  相似文献   

17.
Diphenylamine and derivatives in the environment: a review   总被引:3,自引:0,他引:3  
Drzyzga O 《Chemosphere》2003,53(8):809-818
Diphenylamine (DPA) is a compound from the third European Union (EU) list of priority pollutants. It was assigned by the EU to Germany to assess and control its environmental risks. DPA and derivatives are most commonly used as stabilizers in nitrocellulose-containing explosives and propellants, in the perfumery, and as antioxidants in the rubber and elastomer industry. DPA is also widely used to prevent post-harvest deterioration of apple and pear crops. DPA is a parent compound of many derivatives, which are used for the production of dyes, pharmaceuticals, photography chemicals and further small-scale applications. Diphenylamines are still produced worldwide by the chemical industries. First reports showed that DPA was found in soil and groundwater. Some ecotoxicological studies demonstrated the potential hazard of various diphenylamines to the aquatic environment and to bacteria and animals. Studies on the biodegradability of DPA and its derivatives are very sparse. Therefore, further investigation is required to determine the complete dimension of the potential environmental hazard and to introduce possible (bio)remediation techniques for sites that are contaminated with this class of compounds. This is the first detailed review on DPA and some derivatives summarizing their environmental relevance as it is published in the literature so far and this review will recommend conducting further research in the future.  相似文献   

18.

Background, aim, and scope  

The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK.  相似文献   

19.
Yan H  Zhang CJ  Zhou Q  Chen L  Meng XZ 《Chemosphere》2012,88(11):1300-1305
Perfluorinated acids (PFAs) are the subject of increasingly intense environmental research. In this study, sewage sludge samples were collected from 25 wastewater treatment plants (WWTPs) in Shanghai, China to evaluate the levels and profile of C3-C14 PFAs. The results showed a ubiquitous PFAs contamination of sewage sludge in Shanghai with the total PFAs (∑PFAs) range of 126-809 ng g(-1)dw. Perfluorooctanoic acid (PFOA) was found to be the dominant PFA pollutant and its concentration ranged from 23.2 to 298 ng g(-1)dw, much higher than the levels in other countries. Moreover, concentrations of short-chain PFAs (相似文献   

20.
《Chemosphere》2013,90(11):1399-1406
An extensive study on the presence of illicit drugs and pharmaceuticals with potential for abuse in sewage waters was made for the first time in the Netherlands. A total number of 24 target drugs were investigated in influent and effluent wastewater using liquid chromatography coupled to a high resolution Orbitrap mass spectrometer. This powerful analyzer has allowed not only the detection and identification of the compounds under investigation, but also their quantification at very low levels, which is highly innovative in the field of drugs of abuse. Samples were taken from five sewage treatment plants (STPs) during a whole week. The selected STPs served four cities of different size and an international airport. Daily variances of drug loads were demonstrated and removal efficiencies calculated for each drug and STP individually. Twelve target compounds were found in at least one influent or effluent, and highest concentrations were observed in influents collected from more urbanized areas. The compounds more frequently detected were amphetamine, benzoylecgonine, cocaine and THCCOOH together with the pharmaceuticals codeine, oxazepam and temazepam. Established week trends in consumption of drugs showed distinct differences between individual drugs. A slightly different occurrence pattern was observed in wastewaters from the airport. Thus, methamphetamine was only detected at Schiphol, a fact that was interpreted to be caused by consumption of this drug by travelers. Despite the fact that the Netherlands has frequently been criticized for its liberal drug policy the results from this study did not reveal higher drug consumption than found elsewhere, with the exception of cannabis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号