首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few studies have evaluated how effectively environmental contamination may reduce genetic diversity of a population. Here, we chose a laboratory approach in order to test if tributyltin (TBT) exposure at environmentally relevant concentrations leads to reduced genetic variation in the midge Chironomus riparius. Two TBT-exposed and two unexposed experimental populations were reared simultaneously in the laboratory for 12 generations. We recorded several life-history traits in each generation and monitored genetic variation over time using five variable microsatellite markers. TBT-exposed strains showed increased larval mortality (treatments: 43.8%; controls: 27.8%), slightly reduced reproductive output, and delayed larval development. Reduction of genetic variation was strongest and only significant in the TBT-exposed strains (treatments: −45.9%, controls: −24.4% of initial heterozygosity) after 12 generations. Our findings document that chemical pollution may lead to a rapid decrease in genetic diversity, which has important implications for conservation strategies and ecological management in polluted environments.  相似文献   

2.
Both local adaptation and acclimation in tolerance mechanisms may allow populations to persist under metal pollution. However, both mechanisms are presumed to incur (energetic) costs and to trade-off with other life-history traits. To test this hypothesis, we exposed Pardosa saltans (Lycosidae) spiderlings originating from metal-polluted and unpolluted sites to a controlled cadmium (Cd) treatment, and compared contents of metal-binding metallothionein-like proteins (MTLPs), internal metal concentrations, and individual survival and growth rates with a reference treatment. While increased MTLP concentrations in offspring originating from both polluted and unpolluted populations upon exposure indicates a plastic tolerance mechanism, survival and growth rates remain largely unaffected, independent of the population of origin. However, MTLP and Cd concentrations were not significantly correlated. We suggest that MTLP production may be an important mechanism enabling P. saltans populations to persist in ecosystems polluted with heavy metals above a certain level.  相似文献   

3.
Sun Q  Wang XR  Ding SM  Yuan XF 《Chemosphere》2005,60(1):22-31
Phytochelatins (PCs) have been proposed as a potential biomarker for metal toxicity. In this study, cadmium (Cd) toxicity, PCs production and their relationship in wheat under Cd stress were examined using various exogenous organic chelator-buffered nutrient solutions. Single Cd stress produced strong toxic effects, as indicated by decreases of growth parameters, high level of lipid peroxidation in leaf and overproduction of PCs in root. Exogenous organic chelators with proper dose more or less reduced Cd toxicity by increasing growth parameters and decreasing lipid peroxidation in leaves. Of organic chelators (EDTA, DTPA, citric acid, malic acid and oxalic acid), EDTA was the most effective in decreasing Cd toxicity in plants, followed by DTPA and citric acid. Simultaneously, the concentrations of Cd-induced PCs in roots decreased, and the greatest decrease was caused by application of EDTA and DTPA. Linearly positive relationships were observed between Cd toxicity and root PCs concentrations under the influences of organic chelators, particularly EDTA, DTPA and citric acid. Furthermore, present results provide stronger evidence that PCs synthesis in plant cells was related to free Cd ion concentrations, not total Cd, and demonstrate that the levels of PCs production in plants correlated well with toxic effects caused by the bioavailable Cd levels.  相似文献   

4.
In standardized ecotoxicological testing chemicals are investigated under optimal conditions for the test organisms despite the fact that environmental factors such as predation pressure and food availability are important parameters regulating natural populations. Food limitation and predator presence can induce shifts in life-history traits in various Daphnia species, especially trade-offs in reproductive biomass allocation. These adaptive responses are thought to ensure survival of the population in a highly variable environment. A xenobiotic dispersant (used in textile dyeing processes) also shifted the biomass allocation of Daphnia magna. To assess whether the dispersant could hinder D. magna adaptation to varying environmental conditions, we conducted experiments with food level and presence of Chaoborus larvae as environmental factors and simultaneous exposure to the dispersant. At low food level and in presence of the predator, D. magna produced fewer but larger sized neonates, regardless of dispersant exposure. The dispersant shifted biomass allocation towards more but smaller sized offspring in all experiments. However, the adaptive response to the environmental factors and the dispersant effect cancelled each other out in that they induced independently from each other opposite shifts in biomass allocation. In summary, the dispersant exposure resulted not in an inhibition of the adaptive response but in a reduction of the value of the response. Our study with this model substance demonstrates that xenobiotics can affect the adaptation of organisms to environmental stress which can result in effects likely to be overlooked in standardized testing.  相似文献   

5.
Extraneous factors have been shown to greatly modify pollutant stress. The present study was conducted with the objective of determining whether differences in food levels could modify chronic toxicity of cadmium to the various life-history parameters of the cladoceran Echinisca triserialis. Laboratory experiments were conducted on a sublethal range of cadmium (0, 2.5, 5.0, 10 and 20 microg litre(-1)) on life-history parameters such as survivorship, longevity, life expectancy, age at first reproduction, total fecundity, neonate size, net reproductive rate (R0), generation time (T), intrinsic rate of natural increase (r) and growth of Echinisca triserialis in relation to different food (Chlorella) levels of 0.5 (low), 1.5 (medium) and 4.5 (high) x 10(6) cells ml(-1). Cadmium levels of 10 microg litre(-1) and above, and low food levels, had a profound effect in decreasing the magnitude of all parameters studied. EC50 levels computed for life-history parameters, such as longevity, life expectancy at birth, total fecundity, R0 and T, were in the range of 2 to 21 microg litre(-1) cadmium, and this is indicative of extreme adverse effects on the population dynamics of E. triserialis when exposed to low food levels. At high food levels the EC50 was not achieved for cadmium in the toxicant range studied. The significance of these results is discussed in relation to field conditions.  相似文献   

6.
Effect of nitric oxide donor (sodium nitroprusside, SNP, 500 μM) or hydrogen peroxide scavenger (dithiothreitol, DTT, 500 μM) on cadmium (Cd) or copper (Cu) uptake (150 μM solutions) and toxicity using Scenedesmus quadricauda was studied. Combined treatments (Cd or Cu + DTT or SNP) usually ameliorated metal-induced toxicity at the level of pigments, proteins, and mineral nutrients in comparison with respective metal alone. Viability tests (MTT and TTC) showed the lowest values preferentially in Cu treatments, indicating higher toxicity in comparison with Cd. Cd showed low impact on amino acids while strong Cu-induced depletion was mitigated by DTT and SNP. Amount of ROS and NO showed the most pronounced responses in SNP variants being rather reciprocal than parallel and regulated ascorbate peroxidase activity. Blot gel analyses of hsp70 protein did not reveal extensive changes after given exposure period. Phenols were elevated by DTT alone while all Cu treatments revealed depletion. Total Cu content decreased while total Cd content increased in metal + SNP or metal + DTT. Subsequent experiment using lower Cd, SNP or DTT doses (10 and 100 μM) revealed concentration-dependent impact on Cd uptake. Overall, DTT was found to be more suitable for the amelioration of metal-induced toxicity.  相似文献   

7.
In nature, organisms have to respond to a diversity of factors acting simultaneously. The present investigation was conducted to study whether changes in food (Chlorella) levels could modify the chronic toxicity of cadmium on the various life-history parameters, such as survivorship, longevity, life expectancy, fecundity, age at first reproduction, R(0), T, r and growth rates of the cladoceran Daphnia carinata. The study indicated that at low food levels (0.5 x 10(6) cells ml(-1) Chlorella), cadmium concentrations in the range of 27-162 microg litre(-1) reduced these life-history parameters by 50% (EC(50)). At medium food levels (1.5 x 10(6) ml(-1) Chlorella) the EC(50) of cadmium was in the range of 51-127 microg litre(-1). At high food levels (4.5 x 10(6) cells ml(-1) Chlorella), the toxic effect of cadmium was greatly reduced. The decreases in survival, growth and reproduction of D. carinata at high cadmium-low food levels affected the fitness parameter 'r'. The study emphasises the need to include reproductive parameters other than mere survival in toxicity bioassays. The study also stresses the need to incorporate in laboratory tests other relevant factors that might modify pollutant toxicity.  相似文献   

8.
Dong J  Wu F  Zhang G 《Chemosphere》2006,64(10):1659-1666
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.  相似文献   

9.
Trace metals are one of the groups of pollutants that reduce genetic variability in natural populations, causing the phenomenon known as “genetic erosion”. In this study we evaluate the relationship between trace metals contamination (Hg, Cd and Cu) and genetic variability, assessed using fluorescent Inter-Simple Sequence Repeats (fISSRs). We used eight populations of a well-established biomonitor of trace metals on sandy beaches: the amphipod Talitrus saltator. The trace metals analysis confirmed the ability of sandhoppers to accumulate Hg, Cd and Cu. Moreover, populations from sites with high Hg availability had the lowest values of genetic diversity. Our results validate the use of fISSR markers in genetic studies in sandhoppers and support the “genetic erosion” hypothesis by showing the negative influence of Hg contamination on sandhopper genetic diversity. Therefore, genetic variability assessed with fISSR markers could be successfully employed as a biomarker of Hg exposure.  相似文献   

10.
Prior investigations identified an association between low-level blood arsenic (As) and bladder cancer risk among Tunisian men but questions remain regarding confounding by cadmium (Cd), a well-established bladder carcinogen. A case–control study of Tunisian men was re-examined to assess the levels of cadmium in blood and reparse the association between the simultaneous exposure to these metals and bladder cancer risk. Levels of blood Cd were significantly twice higher among cases than in controls (P?<?0.05) and were positively correlated with smoking and age. Additionally, analysis of metal levels among non-smokers according to the region of residence showed very high blood Cd and As levels for the coastal regions of Sfax and central Tunisia. After controlling for potential confounders, for low blood As levels (<0.67 μg/L), the OR for blood Cd was 4.10 (95 % CI 1.64–10.81), while for higher levels (>0.67 μg/L), it was reduced to 2.10 (CI, 1.06–4.17). Adjustment for Cd exposure did not alter the risk associated to As exposure. This study is the first to report the relationship between Cd exposure and risk of bladder cancer occurrence in interaction with smoking and As exposure. Smoking is shown to be the main exposure source to Cd in the Tunisian population but also environmental pollution seems to be responsible of Cd exposure among non-smokers. Exposure assessment studies encompassing a wider population are needed.  相似文献   

11.
Larvae of Hydropsyche contubernalis and H. siltalai were exposed to sublethal cadmium concentrations of 0, 0.012, 0.16 and 10 mg/litre(-1) for 72 h. Linear logit models revealed a significant increase in the frequency and degree of damage of the anal papillae of both species with increasing Cd concentration. Hydropsyche contubernalis showed a stronger and earlier anal papillae response under Cd exposure than H. siltalai, whereas in the latter species darkening of the ventral sides of the abdomen was also observed. The lowest Cd level altered the competition behaviour of Hydropsyche contubernalis larvae after only 24 h exposure, yet no visual signs of morphological damage were detected. The exposure intruder larvae spent significantly less time trying to enter the nets of resident larvae than did unexposed intruders. In addition, both the exposed intruders and exposed residents pursued different behavioural tactics during the encounters compared to their unexposed counterparts.  相似文献   

12.
The goal of this study was to contribute to understanding of the mechanisms behind sensitivity differences between early and late instar larvae of Chironomus riparius and to address the influence of the differences in standard testing approaches on the toxicity evaluation. A 10-day contact sediment toxicity test was carried out to assess sensitivity to cadmium exposure in relation to different age and laboratory culture line origin of test organisms. Chironomid larvae of early (OECD 218 method) and late instar (US-EPA600/R-99/064 method) differed substantially in sensitivity of traditional endpoints (OECD: LOEC 50 and 10 μg Cd/g dry weight (dw); US-EPA: LOEC?>?1000 and 100 μg Cd/g dw for survival and growth, respectively). Bioaccumulated cadmium and metallothioneins (MTs) concentrations were analyzed to investigate the role of MTs in reduced sensitivity to cadmium in late instar larvae. Metallothioneins were induced after treatment to greater Cd concentrations, but their levels in relation to cadmium body burdens did not fully explain low sensitivity of late instars to cadmium, which indicates some other effective way of detoxification in late instars. This study brings new information related to the role of MTs in age-dependent toxicant sensitivity and discusses the implications of divergence in data generated by chironomid sediment toxicity tests by standardized methods using different instars.  相似文献   

13.
We report results of a multigenerational experiment with Chironomus riparius. Two strains with a high and a low level of genetic variability were exposed to a low, environmentally relevant TBT concentration of 80 μg Sn kg−1 sediment dw nominally (time weighted mean, based on measured concentrations: 4.5 μg Sn kg−1 sediment dw), and various life history traits as well as genetic diversity were monitored for eleven consecutive generations. While TBT effects are hardly visible in the outbred and genetically diverse strain, the inbred and genetically impoverished strain shows a clearly reduced population growth rate compared to the control. Moreover, the impoverished strain shows an increase in fitness over time. Analyses of variation at five microsatellite loci revealed that the level of genetic variation is strongly reduced in the inbred compared to the outbred strain. Moreover, genetic diversity increases over time in the inbred strain. This finding explains the observed increase in fitness in both inbred lineages (control and TBT exposed). The results document that inbreeding and the level of genetic diversity might be of crucial importance in populations under pollution stress. Furthermore, ecotoxicological bioassays have to consider genetic diversity if results between laboratories should be comparable. Our data provides evidence that genetic diversity strongly contributes to the survival of a population exposed to chemical pollution.  相似文献   

14.
Populations subject to anthropogenic contaminants often display altered patterns of genetic variation, including decreased genetic variability. Selective pressures of contaminant exposure are also reflected in differential tolerance between genotypes. An industrial chemical spill in a major eastern Australian waterway in July 2006 resulted in altered patterns of genetic variability in a nearby population of the amphipod, Melita plumulosa for up to one year post-spill, despite the site being declared clean after 48 h. Here, we investigate the toxicant response of three mitochondrial lines naturally occurring at the impacted site by comparing survivorship and life-history trait variables following naphthalene exposure. Overall, M. plumulosa demonstrated differential survivorship between mitochondrial lines under exposure to high concentrations of naphthalene. In addition, we identified differential fecundity and frequencies of gravidity in female amphipods between the mitochondrial haplotypes examined. These findings suggest that the patterns of genetic variability previously identified may be linked with differential tolerance and/or reproductive performance between mitochondrial lineages.  相似文献   

15.
Chen F  Dong J  Wang F  Wu F  Zhang G  Li G  Chen Z  Chen J  Wei K 《Chemosphere》2007,67(10):2082-2088
The variation in grain cadmium (Cd) concentrations was evaluated among 600 barley genotypes grown in the same field condition to select low Cd accumulating genotypes. The results showed that there is considerable genotypic variation in grain Cd concentrations in barley grain samples, with the mean concentration of 0.16 mg kg(-1) DW and the variation of 0 (not detected) to 1.21 mg kg(-1) DW, and 47.2% of the grain samples exceeded the maximum permissible concentration (MPC) for Cd in cereal grains. In addition, differences between genotypes over the two years were fairly consistent, and Beitalys and Shang 98-128 showed the lowest grain Cd concentration, being 97.5% lower than that in the two highest Cd accumulators E-barley 6 and Zhenong 8 in the second harvest year. The great genotypic differences in Cd concentrations indicated that it is possible to lower Cd content of barley through cultivar selection and breeding for use at sites where Cd concentration in grain exceeds the MPC. Significant genotypic difference was also found in microelement concentrations. Correlation analysis showed that only Mn accumulation is synergetic with Cd accumulation, despite slightly positive relationship between Cd and Zn, Cu, or Fe in accumulation in barley grains.  相似文献   

16.
EC50s for cadmium, copper, lead and zinc were determined for juvenile production of Folsomia candida at pH6.0, 5.0 and 4.5 in a standard laboratory test system. In contrast to most previous studies where metal toxicity was increased at low pHs, in our experiments there was no clear relationship between soil acidity and EC50-reproduction in this species. The EC50-reproduction values (μg g−1) for cadmium and zinc were similar at all three pHs (pH6.0: Cd 590, Zn 900; pH5.0: Cd 780, Zn 600; pH4.5: Cd 480, Zn 590). In contaminated field sites adjacent to primary zinc smelters, zinc is invariably present in soils at concentrations of at least 50 times that of cadmium Thus deleterious effects of mixtures of these metals on populations of Collembola in such sites can be attributed to zinc rather than cadmium.  相似文献   

17.
Biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11 was isolated from coastal marine sediment of Paradeep Port, Odisha, East Coast, India, which resisted up to 1,000 ppm of cadmium (Cd) as cadmium chloride in aerobic conditions with a minimal inhibitory concentration of 1,250 ppm. Biomass and extracellular polymeric substances (EPS) secreted by the cells effectively removed 58.760?±?10.62 and 29.544?±?8.02 % of Cd, respectively. The integrated density of the biofilm-EPS observed under fluorescence microscope changed significantly (P?≤?0.05) in the presence of 50, 250, 450, 650 and 850 ppm Cd. ATR-FTIR spectroscopy showed a peak at 2,365.09/cm in the presence of 50, 250, 450 and 650 ppm Cd which depicts the presence of sulphydryl group (–SH) within the EPS, whereas, a peak shift to 2,314.837/cm in the presence of 850 ppm Cd suggested the major role of this functional group in the binding with cadmium. On exposure to Cd at 100, 500 and 1,000 ppm, the expression profiles of cadmium resistance gene (czcABC) in the isolate showed an up-regulation of 3.52-, 17- and 24-fold, respectively. On the other hand, down-regulation was observed with variation in the optimum pH (6) and salinity (20 g l?1) level. Thus, the cadmium resistance gene expression increases on Cd stress up to the tolerance level, but an optimum pH and salinity are the crucial factors for proper functioning of cadmium resistance gene.  相似文献   

18.
Tobacco is able to accumulate cadmium and reduction of cadmium content can reduce health hazards to smokers. Soil pH and form of N fertilizers are among the factors affecting Cd uptake by tobacco. This hypothesis was tested in an acid soil in northern Greece by a four year field experiment. The variability of Cd uptake by tobacco was attributed to the variation of soil Cd availability as affected by soil pH. Liming with 3000 kg Ca(OH)(2) ha(-1) increased soil pH by 0.8 units and decreased extractable with DTPA soil and leaf Cd by 40% and 35%, respectively. The ammonium fertilizer caused the opposite, but weaker, effects. Liming reduced soil Cd more in the ammonium treatment than in nitrate or combined N treatments. The year of cultivation strongly affected soil and leaf Cd. Four years after tobacco cultivation, soil pH was reduced by 0.5 units, whereas soil and leaf Cd reduction was more than 60% in the limed treatments. Liming affected Cd uptake only in the first three years of cultivation.  相似文献   

19.
Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0-0.5 microg mL(-1) of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 microg g(-1) DW in shoots and from 163.1 to 574.7 microg g(-1) DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号