首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.  相似文献   

2.
Tropospheric ozone has been identified as the most important regional scale air pollutant across much of eastern United States of America and many areas of Mediterranean climes in southern Europe. Recent field surveys in the northeastern USA and in southeastern Spain have revealed many additional plant species that exhibit symptoms typical of ozone-induced injuries. Objectives of this study were to confirm ozone as the cause of the observed foliar symptoms, determine ozone induced exposure/response relationships, and identify possible bio-indicator species. Thirteen native species of northeastern USA and 27 native species of southeastern Spain were selected for study. Plant species were exposed to ozone within 16 CSTR chambers in a greenhouse during the summer seasons of 2000 and 2001; ozone exposures of 30, 60, 90, and 120 ppb were delivered for 7 h/day, 5 days/week. Results have confirmed that with few exceptions, symptoms observed in the field were induced by exposures to ambient ozone. Species differed significantly in terms of the exposures required for the initiation of visible symptoms and subsequent injury progression.  相似文献   

3.
Field symptoms typical of ozone injury have been observed on several conifer species in Great Smoky Mountains National Park, and tropospheric ozone levels in the Park can be high, suggesting that ozone may be causing growth impairment of these plants. The objective of this research was to test the ozone sensitivity of selected conifer species under controlled exposure conditions. Seedlings of three species of conifers, Table Mountain pine (Pinus pungens), Virginia pine (Pinus virginiana), and eastern hemlock (Tsuga canadensis), were exposed to various levels of ozone in open-top chambers for one to three seasons in Great Smoky Mountains National Park in Tennessee, USA. A combination of episodic profiles (1988) and modified ambient exposure regimes (1989-92) were used. Episodic profiles simulated an average 7-day period from a monitoring station in the Park. Treatments used in 1988 were: charcoal-filtered (CF), 1.0x ambient, 2.0x ambient, and ambient air-no chamber (AA). In 1989 a 1.5x ambient treatment was added, and in 1990, additional chambers were made available, allowing a 0.5x ambient treatment to be added. Height, diameter, and foliar injury were measured most years. Exposures were 3 years for Table Mountain pine (1988-90), 3 years for hemlock (1989-91), and 1 and 2 years for three different sets of Virginia pine (1990, 1990-91, and 1992). There were no significant (p<0.05) effects of ozone on any biomass fraction for any of the species, except for older needles in Table Mountain and Virginia pine, which decreased with ozone exposure. There were also no changes in biomass allocation patterns among species due to ozone exposure, except for Virginia pine in 1990, which showed an increase in the root:shoot ratio. There was foliar injury (chlorotic mottling) in the higher two treatments (1.0x and 2.0x for Table Mountain and 2.0x for Virginia pine), but high plant-to-plant variability obscured formal statistical significance in many cases. We conclude, at least for growth in the short-term, that seedlings of these three conifer species are insensitive to ambient and elevated levels of ozone, and that current levels of ozone in the Park are probably having minimal impacts on these particular species.  相似文献   

4.
The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O3 in the 2001 season.  相似文献   

5.
From 1993 to 2000, trees, shrubs, forbs and vines were evaluated for symptoms of probable ozone injury in the vicinity of passive ozone samplers or active ozone monitors in forest condition assessment networks in mostly mountainous regions, principally the Carpathian Mountain Range, in the central European countries Czech Republic, Poland, Romania, Slovakia and Ukraine. Each country was visited at least twice during the time period. Over the course of eight seasons, 29 species of native plants were identified as potential bioindicators of ozone. This is the first report of probable ozone injury on native plants in central Europe. Forbs and shrubs made up the bulk of the species (21 of 29). Potential bioindicators that are widely distributed include the forbs Centaurea nigra. and Impatiens parviflora and the shrubs Alnus incana, Corylus avellana, and Sambucus racemosa. Ozone concentrations in forcsted areas of central Europe appear to be high enough and of sufficient duration to cause foliar injury on a wide variety of native plants.  相似文献   

6.
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed.  相似文献   

7.
8.
Ozone is a widely distributed pollutant in the atmospheric boundary layer over north west Europe. Three main sources have been identified: the stratosphere, the free troposphere and boundary layer photochemical production. The pattern of ground level ozone concentrations resulting from these three sources cannot be accurately specified. Ozone shows significant variations in space and time but because of the high cost of continuous monitoring equipment, spatial variations on a national and international basis have not been studied in detail. Variations in ozone concentrations at individual monitoring sites have been given a great deal of attention and experience gained from United Kingdom monitoring sites is described in some detail. The averaging time statistical model of Larsen is employed to relate the exposure levels measured over different averaging periods. Diurnal variations have a major influence on exposure levels at sites nominally exposed to the same regional ozone distribution. The physical and chemical mechanisms which give rise to diurnal variations are detailed so that sites can be screened for different diurnal behaviour characteristics.  相似文献   

9.
During 1993-1996 and 2001-2003, we evaluated the percentage of plants (incidence) exhibiting ozone-induced foliar symptoms on vegetation within a National Wildlife Refuge located along the Atlantic Ocean coast of New Jersey, USA. Incidence varied among plant species and years. Bioindicator plants most sensitive to ozone, across all years, included native common milkweed (Asclepias syriaca) and wild grape (Vitis spp.), as well as introduced tree-of-heaven (Ailanthus altissima). Less sensitive bioindicators included Virginia creeper (Parthenocissus quinquefolia) and winged sumac (Rhus coppolina). Black cherry (Prunus serotina) and sassafras (Sassafras albidum) were least sensitive. The greatest incidence of ozone symptoms, across all plant species, occurred in 1996, followed by 2001>1995>1994>1993>2003>2002. A model was developed that showed a statistically significant relationship between incidence of ozone symptoms and the following parameters: plant species, Palmer Drought Severity Index, and the interaction of W126 x N100 measures of ambient ozone.  相似文献   

10.
Ambient concentrations of ozone in Europe are high enough to cause negative effects on vegetation. Therefore, many efforts have been made to determine exposure indices and critical levels for protection of vegetation. In this context, the choice of a suitable attribute to determine the pollutant effect is of paramount importance. Until now, much of the work has been done with attributes such as biomass or growth. In the present work correlation factors have been established between biochemical parameters (peroxidase activity, ascorbate and sulfhydryl contents) of Pinus radiata trees and exposure indices of ozone. Our results show that peroxidase cannot be used as an indicator of effects of long-term exposure to ozone but still remains as an excellent indicator of short-term ozone fluctuations in the field. Ascorbate may act as an intermediate indicator responding to both short fluctuations and long-term exposures to ozone. Finally, sulfhydryl may be used as a long-term indicator in relation to the AOT (average over threshold) exposure index. Our results also point to the fact that Pinus radiata may be affected by ozone at AOT values lower than 10 ppm.h as already observed with other tree species.  相似文献   

11.
Data from recent experiments at North Carolina State University and other locations provide a unique opportunity to study the effect of ambient ozone on the growth of clover. The data consist of hourly ozone measurements over a 140 day growing season at eight sites in the US, coupled with clover growth response data measured every 28 days. The objective is to model an indicator of clover growth as a function of ozone exposure. A common strategy for dealing with the numerous hourly ozone measurements is to reduce these to a single summary measurement, a so-called exposure metric, for the growth period of interest. However, the mean ozone value is not necessarily the best summarization, as it is widely believed that low levels of ozone have a negligible effect on growth, whereas peak ozone values are deleterious to plant growth. There are also suspected interactions with available sunlight, temperature and humidity. A number of exposure metrics have been proposed that reflect these beliefs by assigning different weights to ozone values according to magnitude, time of day, temperature and humidity. These weighting schemes generally depend on parameters that have, to date, been subjectively determined. We propose a statistical approach based on profile likelihoods to estimate the parameters in these exposure metrics.  相似文献   

12.
Numerous ozone exposure statistics were calculated using hourly ozone data from crop yield loss experiments previously conducted for alfalfa, fresh market and processing tomatoes, cotton, and dry beans in an ambient ozone gradient near Los Angeles, California. Exposure statistics examined included peak (maximum daily hourly) and mean concentrations above specific threshold levels, and concentrations during specific time periods of the day. Peak and mean statistics weighted for ozone concentration and time period statistics weighted for hour of the day were also determined. Polynomial regression analysis was used to relate each of 163 ozone statistics to crop yield. Performance of the various statistics was rated by comparing residual mean square (RMS) values. The analyses demonstrated that no single statistic was best for all crop species. Ozone statistics with a threshold level performed well for most crops, but optimum threshold level was dependent upon crop species and varied with the particular statistics calculated. The data indicated that daily hours of exposure above a critical high-concentration threshold related well to crop yield for alfalfa, market tomatoes, and dry beans. The best statistic for cotton yield was an average of all daily peak ozone concentrations. Several different types of ozone statistics performed similarly for processing tomatoes. These analyses suggest that several ozone summary statistics should be examined in assessing the relationship of ambient ozone exposure to crop yield. Where no clear statistical preference is indicated among several statistics, those most biologically relevant should be selected.  相似文献   

13.
Five cultivars of buddleia, Buddleia davidii Franch., were exposed to sub-ambient, ambient, and twice-ambient levels of ozone in open-top chambers for 8 weeks (June-August) during 1995: Plants were evaluated for foliar injury, growth index, and inflorescence characteristics during and following exposure. Destructive harvests were conducted at the end of the exposure period to determine dry weights of both above- and below-ground plant components. All cultivars had symptoms of visible injury in the twice-ambient treatment at both three and eight weeks after exposures began. No visible symptoms were observed at ambient ozone concentrations. At three weeks of exposure, 'Pink Delight' had the highest percentage of the leaves injured (PLI), 46.2%, followed by 'Opera' with a PLI of 23.3%. The other three cultivars had similar PLIs of less than 15%. After eight weeks of exposure, visible injury was equally severe on all cultivars with a mean PLI of 50.2% and mean Horsfall-Barratt rating of 5.4, indicating 12 to 25% of the leaf area was injured. No ozone x cultivar interaction was found for any growth variable measured. Across cultivars, growth index was reduced by 6%, total dry weight by 35%, and the number of developing floral buds and inflorescences by 29% for plants in twice-ambient ozone concentrations compared to ambient ozone concentrations. Percent biomass allocated to inflorescences was significantly greater for plants exposed to sub-ambient levels compared to those exposed to ozone at either ambient or twice-ambient concentrations. Results indicate that ozone levels similar to those in large urban areas in the southeastern United States have the potential to reduce growth and flowering of this important landscape plant.  相似文献   

14.
In the South-Eastern French Mediterranean region, high ozone concentrations were measured since many years and specific symptoms like chlorotic mottles were detected on Arolla pines. We presented results for the 2000-2008 period concerning the trend analysis for ambient ozone concentrations and related forest damages, with the Mann and seasonal Kendall tests. Ozone precursor’s emissions from Europe have been reduced over the last 20 years. Decreases in annual averages, median, 25th and 98th percentiles and maxima values were found. The seasonal trend analysis for the high-lying stations showed a decreasing trend for the warm season, when main ozone production is the photochemistry, and an increase for the cold period, caused by a reduced ozone titration. Statistics on Arolla Pine reveal strong correlations between mottling intensity and the high ozone concentrations. Finally, decreases for the ozone concentrations, and associated statistics, AOT40 values and for the mottling intensity on conifers needles were observed.  相似文献   

15.
Forty clones of Betula pendula and 6 clones of Betula pubescens, originating from southern and central Finland, were ranked in order of ozone sensitivity according to visible injuries, growth and leaf senescense under low ozone exposure. The plants were fumigated in natural climatic conditions using an open-air exposure system during two growing seasons. Control plants were grown under ambient air, and the elevated-ozone exposures were 1.6x the ambient in 1994 and 1.7x the ambient in 1995. The differences in ozone sensitivity among clones were large. Ozone tolerance was related to thicker leaves and higher stomatal density as compared to sensitive clones. Ultrastructural ozone-induced symptoms were found in chloroplasts of sensitive clones. Increased number of visibly injured leaves on fumigated plants was correlated with reduced leaf formation, foliage area, shoot dry wt and number of stomata, and increased yellowing of leaves. The results suggest that a considerable proportion of birch trees, showing high sensitivity to ozone, are at risk if ambient ozone exposures increase.  相似文献   

16.
EDU or ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea) has been used in experiments to assess ozone effects on vegetation under field conditions because it provides protection against oxidative damage. Tests have mainly been conducted on crop plants, but for woody species only few reports have provided evidence that it can be used in long-term experiments. In this study we tested the technique of stem injection of EDU to study the effects of ozone exposure on Populus nigra cv. Wolterson over one growing season. Cuttings of Populus nigra were grown in pots in the field and between mid-July and early September plants were repeatedly injected with EDU solution (5 mg/plant) or with water at 14-day intervals. Significant differences were found between EDU- and water-injected plants: water-treated plants had more foliar injury, more chlorotic leaves, and shedding of leaves started earlier, suggesting EDU was effective in preventing visible ozone injury and acceleration of senescence. Photosynthetic rates, measured for one leaf age, showed no differences but were mostly higher for the EDU-treated plants. At the end of the growing season diameter increment was 16% higher and there was a non-significant trend for above-ground biomass to be increased by 9% for the EDU-treated plants. This experiment has provided evidence that for this clone serious ozone damage occurs at relatively low concentrations and that EDU can provide protection against visible injury, as well as against longer term growth reductions.  相似文献   

17.
The lichen species Anaptychia ciliaris, Collema nigrescens, Evernia prunastri, Hypogymnia bitteri, Lobaria pulmonaria, Pseudevernia furfuracea and Usnea rigida s.l. were fumigated with site-relevant concentrations (for Central Europe) of ozone over 80 days (180 microg m(-3) during daytime, 80 microg m(-3) during the night). Chlorophyll fluorescence measurements revealed a significant reduction of Fv/Fm after ozone fumigation in five of the species investigated, indicating severe stress on photosystem II due to ozone. The physiological impairment paralleled our fine structural investigations, revealing a significantly higher percentage of collapsed photobiont cells. This indicates that the effects of ambient ozone concentrations under experimental conditions included biophysical and physiological, as well as structural impairment in the lichens studied.  相似文献   

18.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

19.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides X nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (Experiment 1) and during 1989 and 1990 (Experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In Experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season; then the plants were grown outdoors with ambient ozone in 1989. In Experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season; then the plants were grown outdoors with ambient ozone in 1990. Shallow wounds were made into the bark tissue and inoculated with either an aqueous suspension of conidia of Mycosphaerella populorum or sterile water on 1 and 2 September 1988 (Experiment 1) or 16 and 17 August 1989 (Experiment 2). In Experiment 1, wounds were inoculated either 0, 7, or 14 days after wounding. In Experiment 2, wounds were inoculated either 0, 3, or 6 days after wounding. Canker development was measured after harvest on 16 and 17 July 1989 (Experiment 1) and 28 May 1990 (Experiment 2). In both experiments, chronic exposure to ozone significantly increased the incidence of canker formation in inoculated wounds, and no cankers formed in wounds that received only sterile water. In Experiment 1, cankers formed only on plants inoculated the same day as wounding. No cankers formed on plants inoculated either 7 or 14 days after wounding. In Experiment 2, cankers formed on plants inoculated on the same day as wounding, and on a few plants inoculated 3 days after wounding. No cankers formed on plants inoculated 6 days after wounding. Additionally, in Experiment 2, exposure to increased concentrations of ozone caused a significantly higher number of plants to die during the subsequent winter. Analysis of partial correlation coefficients among plant growth and plant disease variables suggested that the observed ozone-induced increase in the susceptibility of the plants to disease was not mediated by alterations in plant growth.  相似文献   

20.
《Chemosphere》1986,15(6):675-685
Five polycyclic aromatic hydrocarbons (PAH), pyrene (PY), fluoranthene (FL), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), and benzo(e)pyrene (BeP) adsorbed on glass fiber (GF) and Teflon impregnated glass fiber (TIGF) filters and on ambient particulate organic matter (POM) were exposed to ozone (50–300 ppb) passively in a 360-liter Teflon chamber and actively in a flow system. The influence of ozone concentration, exposure time and relative humidity (RH) on the degree of degradation of these PAH was established. The most reactive PAH both on filters and in ambient POM were PY, BaA and BaP. Up to 50–80% of these PAH degraded in 3-hr exposures to 200 ppb of ozone at ∼1% RH; in a flow system, most of the degradation occurred within the first 10 minutes of exposure. With the exception of BaP, the degradation of the PAH tested on GF and TIGF filters were much lower at 50% RH than at 1% RH, whether they were exposed to ozone in an active or passive mode. Interestingly, RH did not significantly affect the reactivity of PAH present in ambient POM passively exposed to ozone. Our results show that PAH are susceptible to ozone degradation under many typical atmospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号