首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

2.
To study whether the urinary 1-hydroxypyrene (1-OHP) could be the biomarker of atmospheric PAHs, a small-scale pilot study was carried out on the relation of 1-OHP vs PAHs with the traffic policemen in Beijing of smokers and nonsmokers to be subgroups in both the exposure and control groups. Both the PAHs and 1-OHP were analyzed with high performance liquid chromatography (HPLC). The ambient concentrations of PAHs were different at the different sites (the average sum of PAHs (TPAH) were 12.36, 16.27, 18.37 ng/m3 at the suburban residential, police station and high traffic area, respectively.), but considerably lower than the personal-exposure concentrations (the average TPAH were 65.84 and 47.28 ng/m3 for patrol cars and inspection station, respectively). Pyrene was correlated well with BaP and the summed PAHs (TPAH), with the correlation coefficients (R) of 0.79, 0.87 for ambient level and 0.92, 0.96 for personal exposure, respectively. The average of 1-hydroxypyrene of smokers and nonsmokers were 0.39, 0.15 μmol/mol creatinine in control group and 0.57, 0.33 μmol/mol creatinine in exposure group, respectively. The better correlation of pyrene to BaP and TPAH especially for personal exposure samples indicated that the probability of urinary 1-hydroxypyrene, the metabolite of pyrene, to be the biomarker of total PAH. Nonsmokers in the exposure and control groups had indistinguishable levels of 1-OHP, presumably because the ambient levels of pyrene were so similar (the average were 3.25, 3.20 ng/m3 at the police station and high traffic area, respectively.). Smokers in the control group had significantly higher 1-OHP than that of the nonsmokers, but showed indistinguishable differences in the exposure group. These results suggested that urinary 1-OHP could be a biomarker of PAHs only when the level of PAHs was at a relatively higher level. Smoking as an important influencing factor need to be controlled carefully.  相似文献   

3.
Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils collected from Dalian, China, for examination of distributions and composition profiles and their potential toxicity. The sum of 15 PAHs (SigmaPAHs) ranged from 190 to 8595 ng g(-1) dry weight, and showed an apparent urban-suburban-rural gradient in both SigmaPAHs and composition profiles. Using hierarchical cluster analysis (HCA), the sampling sites were grouped into four clusters corresponding to traffic area, park/residential area, suburban and rural areas. The ratios of naphthalene (Nap) and fluorene (Fl) versus fluoranthene (Flu), pyrene (Pyr) and indeno(1,2,3-cd)pyrene (InP) in the four clusters provided evidence of local distillation. The diagnostic ratios indicated the prevalent PAH sources were petroleum combustion and coal combustion in Dalian, and a cross plot of diagnostic ratios distinguished the urban samples from suburban and rural ones. Toxic potency assessment of soil PAHs presented a good relationship with benzo(a)pyrene (BaP) levels, toxic equivalent concentrations based on BaP (TEQ(BaP)) and dioxin-like toxic equivalent concentrations (TEQ(TCDD)). The study highlights that BaP is a good indicator for assessing the potential toxicity of PAHs, and presents a promising toxicity assessment method for soil PAHs.  相似文献   

4.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

5.
The concentrations and composition of persistent organic pollutants (POPs) were determined in alluvial soils subjected to heavy flooding in a rural region of Poland. Soil samples (n?=?30) were collected from the upper soil layer from a 70-km2 area. Chemical determinations included basic physicochemical properties and the contents of polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polycyclic aromatic hydrocarbons (PAHs, 16 compounds). The median concentrations of Σ7PCB (PCB28?+?PCB52?+?PCB101?+?PCB118?+?PCB138?+?PCB153?+?PCB180), Σ3HCH (α-HCH?+?β-HCH?+?γ-HCH) and Σ3pp′(DDT?+?DDE?+?DDD) were 1.60?±?1.03, 0.22?±?0.13 and 25.18?±?82.70 μg kg?1, respectively. The median concentrations of the most abundant PAHs, phenanthrene, fluoranthene, pyrene, benzo[b]fluoranthene and benzo[a]pyrene were 50?±?37, 38?±?27, 29?±?30, 45?±?36 and 24?±?22 μg kg?1, respectively. Compared with elsewhere in the world, the overall level of contamination with POPs was low and similar to the levels in agricultural soils from neighbouring countries, except for benzo[a]pyrene and DDT. There was no evidence that flooding affected the levels of POPs in the studied soils. The patterns observed for PAHs and PCBs indicate that atmospheric deposition is the most important long-term source of these contaminants. DDTs were the dominant organochlorine pesticides (up to 99 %), and the contribution of the parent pp′ isomer was up to 50 % of the ΣDDT, which indicates the advantage of aged contamination. A high pp′DDE/pp′DDD ratio suggests the prevalence of aerobic transformations of parent DDT. Dominance of the γ isomer in the HCHs implies historical use of lindane in the area. The effect of soil properties on the POP concentrations was rather weak, although statistically significant links with the content of the <0.02-mm fraction, Ctotal or Ntotal were observed for some individual compounds in the PCB group.  相似文献   

6.
Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops—a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n?=?32) areas were evaluated for five PAHs––naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene—and compared with control area locations with minimum petroleum-related activity (n?=?16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml–1) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg–1. Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r?=?0.82, P?<?0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.  相似文献   

7.
Airborne particulates (PM10) from four different areas within Agra city (a semi-arid region) were collected using respirable dust samplers during the winter season (Nov. 2005–Feb 2006) and were then extracted with methylene chloride using an automated Soxhlet Extraction System (Soxtherm®). The extracts were analyzed for 17 target polycyclic aromatic hydrocarbons (PAHs) and the heterocycle carbazole. The average concentration of total PAH (TPAH) ranged from 8.04 to 97.93 ng m???3. The industrial site had the highest TPAH concentration followed by the residential, roadside, and agricultural sites. Indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, and benzo(b)fluoranthene were the predominant compounds found in the samples collected from all of the sites. The average B(a)P-equivalent exposure, calculated by using toxic equivalent factors derived from literature and the USEPA, was approximately 7.6 ng m???3. Source identification using factor analysis identified prominent three, four, four, and four probable factors at industrial, residential, roadside, and agricultural sites, respectively.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) have been determined in blue mussels (Mytilus galloprovincialis) from several Iberian Mediterranean coastal areas through the implementation of a monitoring programme from Spain in the framework of the Mediterranean Pollution Programme (MED POL). The selected areas correspond to sites with differing degrees of exposure to the main pollution sources (hot spots, coastal and reference areas). The sampling campaigns were performed from 2004 to 2009, with samples being taken from May to June, the non-spawning period for mussels in this area. Thirteen PAHs were determined by high-performance liquid chromatography with specific fluorescence detection. In general, total PAHs concentration was lower than 50 μg kg?1 d.w., except in areas close to the principal ports and cities (Barcelona, Tarragona, Valencia and Algeciras) where it varies from 75 to 390 μg kg?1 d.w. Background concentrations have been proposed for PAHs in mussels (23.8 μg kg?1 d.w.) from Western Mediterranean area. Temporal trends were not statistically significant for PAHs concentrations from 2004 to 2009. Longer monitoring periods would be required to detect a continuous tendency, especially for PAHs because although the efficiency of combustion engines has reduced PAHs emissions, their increasing use could alter this potential reduction. The predominant PAHs were three and four ring congeners in all cases, with the predominance of phenanthrene in mussels sited far from the main PAHs sources. The phenanthrene/anthracene (lower than 10) and fluoranthene/pyrene (higher than 1) ratios indicate that PAHs detected in Spanish Mediterranean coastal mussels are mainly of pyrolytic origin.  相似文献   

9.
To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in sediments from the Bizerte Lagoon (northern Tunisia), 18 surface sediment samples were collected in March 2011 and analyzed for 14 US Environmental Protection Agency priority PAHs by high-performance liquid chromatography. The total concentrations of the 14 PAHs (ΣPAHs) ranged from 16.9 to 394.1 ng g?1 dry weight (dw) with a mean concentration of 85.5 ng g?1 dw. Compared with other lagoons, coasts, and bays in the world, the concentrations of PAHs in surface sediments of the Bizerte Lagoon are low to moderate. The PAHs’ composition pattern was dominated by the presence of four-ring PAHs (45.8 %) followed by five-ring (26.8 %) and three-ring PAHs (12.7 %). The PAH source analysis suggested that the main origin of PAHs in the sediments of the lagoon was mainly from pyrolytic sources. According to the numerical effect-based sediment quality guidelines of the USA, the levels of PAHs in the Bizerte Lagoon should not exert adverse biological effects. The total benzo[a]pyrene toxicity equivalent values calculated for the samples varied from 3.1 to 53.7 ng g?1 dw with an average of 10.6 ng g?1 dw.  相似文献   

10.
Ambient air samples were collected at two different locations between 2011 and 2012 in Zhengzhou, China in order to assess the concentration level, health risks, as well as the sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM2.5). The mean annual levels of PM2.5 observed at industry site and residential site were 172?±?121 and 160?±?72 μg m?3, respectively, which were about five times the annual value of proposed PM2.5 standard (35 μg m?3) in China. The PM2.5 in all daily samples (n?=?47) exceeds the proposed PM2.5 standard in China (75 μg m?3) at both industrial and residential sites. Seasonal variations of PM2.5 showed a clear trend of winter?>?autumn?>?spring?>?summer at both sites. The total concentrations of 16 PM2.5-associated PAHs ranged from 61?±?51 to 431?±?281 and 38?±?25 to 254?±?189 ng m?3, with mean value of 176?±?233 and 111?±?146 ng m?3 at industry and residential sites, respectively. The major species were fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, and the concentration levels of PAHs in PM2.5 were higher in winter than those of other seasons at both sites. The annual mean values of toxicity equivalency concentrations of ∑16PAHs in PM2.5 were 22.8 and 13.5 ng m?3 in industry and residential area, respectively. In this study, the risk level of adult citizens through inhalation exposure to PAHs was calculated. The average estimates of lifetime inhalation cancer risks were approximately 8.9?×?10?7 and 6.3?×?10?7 for industry and residential sites, respectively. The main sources of 16 PAHs from both diagnostic ratios and principle component analysis identified as vehicular emissions and coal combustion.  相似文献   

11.
The present study proposed to investigate the atmospheric distribution, sources, and inhalation health risks of polycyclic aromatic hydrocarbons (PAHs) in a tropical megacity (Delhi, India). To this end, 16 US EPA priority PAHs were measured in the inhalable fraction of atmospheric particles (PM10; aerodynamic diameter, ≤10 μm) collected weekly at three residential areas in Delhi from December 2008 to November 2009. Mean annual 24 h PM10 levels at the sites (166.5–192.3 μg m?3) were eight to ten times the WHO limit. Weekday/weekend effects on PM10 and associated PAHs were investigated. Σ16PAH concentrations (sum of 16 PAHs analyzed; overall annual mean, 105.3 ng m?3; overall range, 10.5–511.9 ng m?3) observed were at least an order of magnitude greater than values reported from European and US cities. Spatial variations in PAHs were influenced by nearness to traffic and thermal power plants while seasonal variation trends showed highest concentrations in winter. Associations between Σ16PAHs and various meteorological parameters were investigated. The overall PAH profile was dominated by combustion-derived large-ring species (85–87 %) that were essentially local in origin. Carcinogenic PAHs contributed 58–62 % to Σ16PAH loads at the sites. Molecular diagnostic ratios were used for preliminary assessment of PAH sources. Principal component analysis coupled with multiple linear regression-identified vehicular emissions as the predominant source (62–83 %), followed by coal combustion (18–19 %), residential fuel use (19 %), and industrial emissions (16 %). Spatio-temporal variations and time-evolution of source contributions were studied. Inhalation cancer risk assessment showed that a maximum of 39,780 excess cancer cases might occur due to lifetime inhalation exposure to the analyzed PAH concentrations.  相似文献   

12.
The purpose of this study was to determine the degree of contamination with polycyclic aromatic hydrocarbons (PAHs) in samples of urban soil from three European cities: Glasgow (UK), Torino (Italy) and Ljubljana (Slovenia). Fifteen PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) were measured in urban soil samples, using harmonised sampling, sample extraction and analyte quantification methods. Although the mean concentration of each PAH in urban soils of each city showed a wide range of values, high levels of contamination were only evident in Glasgow, where the sum of concentrations of 15 PAHs was in the range 1487-51,822 microg kg(-1), cf. ranges in the other two cities were about ten-fold lower (89.5-4488 microg kg(-1)). The three predominant PAHs were phenanthrene, fluoranthene and pyrene, with the sum of these compounds about 40% of the total PAH content. These data, together with some special molecular indices based on ratios of selected PAHs, suggest pyrogenic origins, especially motor vehicle exhausts, to be the major sources of PAHs in urban soils of the three cities. The largest concentrations for PAHs were often found in sites close to the historic quarters of the cities. Overall, the different climatic conditions, the organic carbon contents of soil, and the source apportionment were the dominant factors affecting accumulation of PAHs in soil.  相似文献   

13.
This paper reports the monitoring results of eleven polycyclic aromatic hydrocarbons (PAHs), four to six-ring, at two urban sites-Central & Western (CW) and Tsuen Wan (TW) in Hong Kong from January to December 2000; and the findings of a study conducted in 2001 of the partitioning of the gaseous and particulate phases of PAHs. The sum of the eleven PAHs under study (sigmaPAHs) was found to range from 6.46 to 38.8 ng m(-3). The annual mean levels at 12.2 ng m(-3) and 15.8 ng m(-3) for CW and TW respectively are comparable to those recorded for the previous two years and are also within the reported ranges for other metropolitan cities in the Asia Pacific region. Amongst the selected eleven PAHs, fluoranthene and pyrene were the two most abundant found in the urban atmosphere of Hong Kong during the study period accounting for approximately 80%, of the total PAHs. The ratios of benzo(a)pyrene to benzo(g,h,i)perylene (BaP/BghiP) and indeno(1,2,3-cd)pyrene to benzo(g,h,i)perylene (IDP/BghiP) indicate that diesel and gasoline vehicular exhausts were the predominant local emission sources of PAHs. Seasonal variations with high winter to summer ratios for each of the individual PAHs (CW: 1.6-16.7 and TW: 0.82-8.2) and for sigmaPAHs (CW: 1.9 and TW: 1.8) and a spatial variation of BaP amongst the air monitoring stations are noted. Results of correlation studies illustrate that local meteorological conditions such as ambient temperature, solar radiation, wind speed and wind direction have significant impact on the concentrations of atmospheric PAHs accounting for the observed seasonal variations. A snapshot comparison of the concentrations of PAHs at four sites including a roadside site, a rural site and the two regular urban sites CW and TW was also performed using the profiles of PAHs recorded on two particulate episode days in March 2000.  相似文献   

14.
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.  相似文献   

15.
From March 2008 to February 2009, PM(10) samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) at eight sampling sites in Great Xiamen Bay, China. Analyses of the seasonal and spatial variations of these compounds revealed the following results. Significantly high levels of PAHs were found in the winter compared to the summer, sometimes exceeding 100 ng m(-3), and the spatial variations were influenced most by the sampling site surroundings. Composition profiles of PAHs of an urban and a rural site were shown to be very similar with a positive correlation coefficient larger than 0.9 at the 0.01 level of significance for the same season. Diagnostic ratios, together with principal component and multiple linear regression analysis, showed that more PAHs were from grass/wood/coal combustion in winter than in other seasons. The ratios of benzo[a]pyrene to benzo[e]pyrene (BaP-BeP) in winter and fall were 0.6-1.7 times higher than those in spring and summer, suggesting the importance of local emissions of PAHs. The BaP-BeP ratios in Kinmen were generally lower than those in Xiamen, indicating that the aging degree of PAHs was higher in Kinmen than in Xiamen. The external input of PAHs from upwind urban and industrial areas was one of the key factors causing high levels of PAHs in PM(10) in Great Xiamen Bay in winter.  相似文献   

16.
In order to evaluate the exposure of the northern India rural population to polyaromatic hydrocarbon (PAH) inhalation, indoor pollution was assessed by collecting and analyzing the respirable particulate matter PM2.5 and PM10 in several homes of the village Bhithauli near Lucknow, UP. The home selection was determined by a survey. Given the nature of biomass used for cooking, homes were divided into two groups, one using all kinds of biomass and the second type using plant materials only. Indoor mean concentrations of PM2.5 and associated PAHs during cooking ranged from 1.19 ± 0.29 to 2.38 ± 0.35 and 6.21 ± 1.54 to 12.43 ± 1.15 μg/m3, respectively. Similarly, PM10 and total PAHs were in the range of 3.95 ± 1.21 to 8.81 ± 0.78 and 7.75 ± 1.42 to 15.77 ± 1.05 μg/m3, respectively. The pollutant levels during cooking were significantly higher compared to the noncooking period. The study confirmed that indoor pollution depends on the kind of biomass fuel used for cooking.  相似文献   

17.
This paper reports the first results on alkylphenol pollution in edible bivalves from the Spanish coast. Two sampling campaigns (July 2006 and July 2007) were carried out to determine the concentration of nonylphenol (NP), octylphenol (OP), and eight polycyclic aromatic hydrocarbons (PAHs) in wild mussels (Mytilus galloprovincialys) and clams (Donax trunculus) at 14 sampling sites along the eastern Mediterranean Spanish coast. The results show that NP is the predominant alkylphenol, being the port of Valencia the most polluted area (up to 147 ??g/kg wet weight in clams). Moving away from the ports the concentration of NP in bivalves decreased. OP concentration was below its detection limit in most of the studied areas and its maximum concentration (6 ??g/kg w/w) was measured in clams from the port of Sagunto. The presence of low levels of PAHs was observed in most of the studied areas. The total PAHs concentration (i.e., sum of the eight measured PAHs) achieved a maximum value of 10.09 ??g/kg w/w in the north coast of Valencia city. The distribution pattern of the individual PAHs showed that both pollution sources petrogenic and pyrolytic were present in the sampled areas. Fluoranthene was the most abundant PAH in mussels while benzo(b)fluoranthene in clams. The maximum concentration of 10 ??g/kg w/w for benzo(a)pyrene established by the European Commission was never reached, indeed sampled bivalves showed concentrations 10 times lower than this reference value. Thus, they can be considered safe for human consumption. Despite the low contamination levels, the results show an overall pollution of bivalves by alkylphenol and PAHs as well as an increment in the number of polluted areas from 2006 to 2007. Thus, periodical sampling campaigns should be carried out to monitor the long-term tendency of these toxic and persistent pollutants.  相似文献   

18.
Seventeen parent polycyclic aromatic hydrocarbons (PAHs) and 38 congeners of polychlorinated biphenyls were measured at five different sediment depths (between the surface and ~300 cm below the seafloor) at 160 sites in Naples harbour. Total PAH (??PAH) and PCB (??PCB) concentrations ranged between 0.012?C21.73???nd 0.001?C0.222 mg kg???1, respectively. For PAHs, an evident and progressive decrease in concentration with depth documents the effects of a more intense anthropic impact of this group of pollutants in the recent period. A selected number of PAH isomer pairs (phenanthrene/anthracene, fluoranthene/pyrene and benzo(a)anthracene/crysene) were used to distinguish between contaminants of pyrolitic and petrogenic origin. More than 90% of PAHs present at the different depths of the studied sediments indicate pyrolitic industrial origins. On the other hand, relatively high concentrations of three- and four-ring PAHs suggest a limited contribution of vehicular emissions to the contamination of sediments. An unexpected and systematic increase of ??PCB concentration, exceeding values approved by international regulations, was found in the studied sediments, testifying to the uncontrolled discharge to the studied area from industrial and commercial activity on nearby land. Ecotoxicological risk levels calculated for PAHs suggests a relatively elevated level of toxicity in surface sediments decreasing with depth and very low toxicity values associated to PCB toxicity.  相似文献   

19.
In this study, the semipermeable membrane device (SPMD) passive samplers were used to determine freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in selected water bodies situated in and around Johannesburg City, South Africa. The devices were deployed for 14 days at each sampling site in spring and summer of 2011. Time weighted average (TWA) concentrations of the water-borne contaminants were calculated from the amounts of analytes accumulated in the passive samplers. In the area of interest, concentrations of analytes in water ranged from 33.5 to 126.8 ng l?1 for PAHs, from 20.9 to 120.9 pg l?1 for PCBs and from 0.2 to 36.9 ng l?1 for OCPs. Chlorinated pesticides were mainly composed of hexachlorocyclohexanes (HCHs) (0.15–36.9 ng l?1) and dichlorodiphenyltrichloromethane (DDT) with its metabolites (0.03–0.55 ng l?1). By applying diagnostic ratios of certain PAHs, identification of possible sources of the contaminants in the various sampling sites was performed. These ratios were generally inclined towards pyrogenic sources of pollution by PAHs in all study sites except in the Centurion River (CR), Centurion Lake (CL) and Airport River (AUP) that indicated petrogenic origins. This study highlights further need to map up the temporal and spatial variations of these POPs using passive samplers.  相似文献   

20.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号