首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
ABSTRACT: Ninety‐one sediment oxygen demand (SOD) samples from six designated sites along the stretch of Lower Rapid Creek, South Dakota, were conducted using an in‐situ SOD chamber. Inside the chamber, readings of dissolved oxygen (DO), water temperature, pH, and specific conductance were recorded every minute for more than one hour using the Datasonde 3 Hydrolab. Initial readings of such parameters were recorded for the overlaying water before the deployment of the SOD chamber. Characteristics of the stream conditions, air temperature, barometric pressure, average flow velocity of the stream, depth of the stream, and the flow velocity by the chamber were recorded. Single and multiple linear regression analyses on all parameters indicated that the velocity of the stream is the least critical parameter for SOD in shallow streams.  相似文献   

2.
    
ABSTRACT: The magnitudes and patterns of sediment resuspension are assessed in Cannonsville Reservoir, New York, to quantify and characterize this internal source of sediment. The assessment is based on analyses of sediment trap collections from 10 sites over the spring to fall interval of two years. Temporal and spatial patterns in sediment deposition are demonstrated to be driven by resuspension/redeposition processes. Sediment that had been resuspended and redeposited represented 80 to 96 percent, on average, of the depositing solids collected along the main axis of the lake. About 90 percent of the redeposited sediment was inorganic. Increased resuspension caused by drawdown of the reservoir surface and fall turnover resulted in 10 to 50‐fold increases in deposition rates compared to levels observed when the reservoir was full and strongly thermally stratified. Elevated levels of redeposition from resuspension in the reservoir have been driven by both higher water column concentrations of suspended solids and settling velocities. Recurring longitudinal and lateral gradients in resuspension are delineated, establishing that resuspended solids are transported from the riverine to the lacustrine zone and from near‐shore to pelagic areas. Resuspension is demonstrated to cause increases in inanimate particle (tripton) concentrations. Higher tripton levels have been observed in years with greater drawdown. Water quality impacts of the resuspension phenomenon are considered.  相似文献   

3.
    
ABSTRACT: Considerable advancements have been made in the development of analytical solutions for predicting the effects of pumping wells on adjacent streams and rivers. However, these solutions have not been sufficiently evaluated against field data. The objective of this research is to evaluate the predictive performance of recently proposed analytical solutions for unsteady stream depletion using field data collected during a stream/aquifer analysis test at the Tamarack State Wildlife Area in eastern Colorado. Two primary stream/aquifer interactions exist at the Tamarack site: (1) between the South Platte River and the alluvial aquifer and (2) between a backwater stream and the alluvial aquifer. A pumping test is performed next to the backwater stream channel. Drawdown measured in observation wells is matched to predictions by recently proposed analytical solutions to derive estimates of aquifer and streambed parameters. These estimates are compared to documented aquifer properties and field measured streambed conductivity. The analytical solutions are capable of estimating reasonable values of both aquifer and streambed parameters with one solution capable of simultaneously estimating delayed aquifer yield and stream flow recharge. However, for long term water management, it is reasonable to use simplified analytical solutions not concerned with early‐time delayed yield effects. For this site, changes in the water level in the stream during the test and a varying water level profile at the beginning of the pumping test influence the application of the analytical solutions.  相似文献   

4.
    
ABSTRACT: Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12° Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.  相似文献   

5.
ABSTRACT: Dieback of the ohia forest over a large part of the Hilo watershed and adjacent areas has resulted in a severe loss of the overstory crown component of the vegetation. The decline could cause serious damage to the watershed. To evaluate possible changes in conditions in the Hilo area since the decline began, stream flow, water quality, and precipitation data from 1929 to 1980 were collected and analyzed. The limited data available do not indicate that the ohia decline has resulted in a significant change in either annual stream flow or peak stream flow of a stream discharging from the ohia forest in the Hilo area. Suspended sediment production of two streams remains well within accepted levels as does the chemical makeup of components dissolved in the streams.  相似文献   

6.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

7.
ABSTRACT: The decline of many fish populations within the mid-Appalachian region has been attributed to stream acidification as a result of acid precipitation. Many previous attempts to examine relationships between fish occurrence and acidification have been hindered by a lack of data on water quality and fish distributions. To assess relationships between water quality and bedrock type in the upper Cheat River drainage, we used EPA STORET water quality data (1969–1993) and calculated mean pH and mean alkalinity of streams associated with four bedrock types (Hampshire, Chemung, Mauch Chunk, and Pottsville). We examined the relationship between fish occurrence and bedrock type for 53 headwater streams. We found that acidity in headwater streams associated with Pottsville and Mauch Chunk groups often exceeded biological thresholds for acid-sensitive fish species (pH < 5.5). Streams associated with the Pottsville group typically had fewer cyprinid species and fewer total species than those associated with Mauch Chunk, Chemung, and Hampshire bedrock types. The congruent occurrence of streams with low buffering capacity, streams with pH > 5.5, and streams with low fish species richness indicate that acidification has influenced fish distributions in the upper Cheat River drainage.  相似文献   

8.
The agricultural production from the Lower South Platte Basin in Colorado represents a significant portion of the state economy. Until the early 1950's the production had developed almost exclusively by use of river water. Drought conditions combined with improved well technology resulted in an inordinate amount of well development in the valley during the period 1952-56. These wells were used for supplemental supply in many cases, but the application of sprinkler irrigation brought many acres of here-to-fore dry land into irrigated production. As a result of the vast amounts of groundwater withdrawal by the newly developed wells, senior surface appropriators found a decreasing amount of water available for use in the streams. The legislature, observing the doctrine of prior appropriation, ruled that all surface and ground water in a tributary would be treated and administered as one resource. This, of course, spelled doom for the well-oriented segment of the economy. Analysis of a segment of the river on an inflow-outflow basis was made with careful determination of all inflow-outflow in the study reach to include correlations required to determine ungaged side-channel in-flow and unmetered irrigation wells. Results indicate that wells have intercepted normal return flows to the river resulting in a decreased amount of surface water during the irrigation season. Stream depletion appears to equal the expected consumptive use of well water which ranged between 40% to 50% of the groundwater extraction.  相似文献   

9.
    
ABSTRACT: A land management activity scheduling model that can perform a multi-period, simultaneous evaluation of aquatic habitat quality and commodity production goals was used to identify alternatives which would allow the improvement of aquatic habitat conditions over time, while producing wood products. The scheduling model has the ability to use stream sediment index levels, stream temperature index levels, and equivalent clearcut acres (ECA) levels as primary goals. A secondary goal imbedded in the model is the achievement of an even-flow of timber harvest volume, and a tertiary goal is the achievement of maximum efficiency (maximum net present value). The scheduling model utilizes a heuristic programming technique (Tabu search) to guide the selection of timber harvests and road standards. A 14,643 acre case study watershed in eastern Oregon is used to illustrate several policy scenarios. Activities considered include: clearcutting and partial cutting; cable, skyline, ground-based, and helicopter logging; road obliteration; requiring lower truck tire pressures on forest roads; and tree planting in riparian areas. The scheduling model produced land management plans which were spatially and temporally feasible over ten ten-year time periods. Stream temperature was shown to be dramatically reduced if tree planting is performed in all riparian areas, regardless of whether harvesting activities occurred, and including meadows and forested areas where shade density is low. Timber harvest volume levels decreased 31 to 43 percent, and net present value levels decreased 36 to 46 percent, from an unconstrained case, when any of the following occurred: ECA was constrained to 15 percent, sediment index levels were required to decrease by 1 percent per decade, or temperature levels were constrained to “no harvest” levels. The use of a heuristic programming technique is a departure from traditional techniques that are commonly used in management plan development. Yet the heuristic technique allows the inclusion of complex management goals, many of which may be prohibited when using more traditional mathematical programming techniques. In addition, decision variables which require spatial information, requiring them to take on integer or non-linear representations, can be accounted for without realizing the limitations of the traditional techniques.  相似文献   

10.
    
ABSTRACT: Relationships between wind velocity and the vertical light attenuation coefficient (K0) were determined at two locations in a large, shallow lake (Lake Okeechobee, Florida, USA). K0 was significantly correlated with antecedent wind conditions, which explained as much as 90 percent of the daily variation in K0. Sub-surface irradiance began to change within 60 to 90 minutes of the time when wind velocity exceeded or dropped below a threshold value. Maximum one hour changes in K0 were > 50 percent, however, 20 to 30 percent changes were more common. The magnitude of change in K0 varied spatially based on differences in sediment type. K0 never exceeded 2.8 at a location where bottom sediments were dominated by a mixture of coarse sand and shells. In comparison, K0 exceeded 9 during episodic wind events where the bottom sediment was comprised of fine grain mud. Underwater irradiance data can be used to determine threshold wind velocity and account for the influence sediment type has on K0. Once a threshold velocity has been established, the frequency, rate, and duration of expected change in underwater irradiance can be evaluated. This is critical information for scientists who are studying algal productivity or other light-related phenomena.  相似文献   

11.
Abstract: Sediment oxygen demand (SOD) is believed to be an important process affecting dissolved oxygen (DO) concentrations in blackwater streams of the southeastern coastal plain. Because very few data on SOD are available, it is common for modelers to take SOD values from the literature for use with DO models. In this study, SOD was measured in seven blackwater streams of the Suwannee River Basin within the Georgia coastal plain for between August 2004 and April 2005. SOD was measured using four in situ chambers and was found to vary on average between 0.1 and 2.3 g O2/m/day across the seven study sites throughout the study period. SOD was found to vary significantly between the watersheds within the Suwannee River Basin. However, land use was not found to be the driving force behind SOD values. Statistical analyses did find significant interaction between land use and watersheds suggesting that an intrinsically different factor in each of the watersheds may be affecting SOD and the low DO concentrations. Further research is needed to identify the factors driving SOD dynamics in the blackwater streams of Georgia’s coastal plain. Results from this study will be used by the Georgia Department of Natural Resources – Environmental Protection Division as model input data for the development and evaluation of DO total maximum daily loads in the Georgia coastal plain.  相似文献   

12.
A modified transient version of the Streeter-Phelps model along with the energy balance equation is employed to analyze the effects of waste heat discharge from power plants on stream water quality. Analysis is also made to examine the effects of the upstream water quality and stream velocity on the downstream DO concentration level. The resulting coupled nonlinear hyperbolic partial differential equations representing the energy, BOD and DO concentrations are solved by the method of characteristics and simulated on a digital computer. Final numerical results indicate that the allowable quantity of thermal discharge does heavily depend on the upstream quality.  相似文献   

13.
ABSTRACT: In this study a set of equations was developed which can be used to separate the time varying effects from observed dissolved oxygen (DO) data. A steady state DO profile thus derived allows a reasonable stream stimulation such that both the model and the data used in its formulation do not contain DO due to biological activities. Biological DO production and consumption are complex phenomena. By excluding these highly variable processes, this method simplifies stream DO modeling considerably. The net oxygen input due to these processes exist only part of the day, but, in the stream waste assimilative capacity analysiis and waste load allocation, one would focus his attention on critical condition. Hence, unless the change of stream ecology is the main concern, it is desirable to formulate a stream water quality model without this time varying term.  相似文献   

14.
An index of sediments less than 0.3 mm stored in the top layer of small streams was estimated by disturbing a fixed area for 2 minutes and catching the resultant sediment drift in downstream traps. The method was used in 24 small northern California streams and was tested by releasing known amounts and sizes of sediments in controlled trails. Field use showed general agreement with an exponential model of decrease in sediment trapped vs. distance. Sites in distrubed reaches (watersheds logged with no streamside buffers or with buffers less than 30 m) had higher indices of stored sediment than control sites. Estimates from controlled trials averaged 7.5 percent higher than actual losses for composite size classes ≤ 0.3 mm, 19.7 percent higher than actual losses for just the ≤ 0.125 mm class, and 15.2 percent for all 14 trials. The method is relatively simple and suitable for remote locations, particularly in studies comparing many small streams.  相似文献   

15.
    
Determination of the nature and extent of the connection between groundwater and surface water is of paramount importance to managing water supplies. The development of analyses that detail the surface water‐groundwater system may lead to more effective utilization of available water. A tool was developed to help determine the effects of groundwater and surface water interactions. The software tool includes two graphic user interfaces to allow full compatibility with numerical MODFLOW groundwater models. This case study shows the tool, in conjunction with MODFLOW groundwater models and carefully designed scenarios, can successfully calculate the rates of stream‐groundwater interactions, thereby providing the basis for designating management areas with the most significant hydrologic impact. This tool can be applied in other regions with similar settings and needs for integrated water management.  相似文献   

16.
    
ABSTRACT: In recent years, logs and other structures have been added to streams for the purposes of altering channel morphology to improve fish habitat. This flume study was conducted to evaluate the effects of coarse woody debris on local channel morphology. Wooden dowels were used to simulate the effects of individual logs in a stream, and scour depth and surface area were determined at the end of each test run. The maximum scour depth was significantly correlated (90 percent confidence level) with both the vertical orientation of the dowels and the channel opening ratio; the scour surface area was significantly correlated (90 percent confidence level) with both the flow depth and the vertical orientation. Upstream-oriented dowels caused relatively large streambed scour and also deflected flows toward the streambank. Downstream-oriented dowels generally caused less bed scour and appeared to provide better bank protection because flow was generally deflected from the bank. In conjunction with data from field studies, these results provide information on the effects of orientation, hydraulic function, and relative stability of coarse woody debris in streams.  相似文献   

17.
    
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   

18.
ABSTRACT: Theoretical equations that establish the relationship between sediment oxygen demand (SOD) in a lake and the flow velocity and dissolved oxygen concentration in the bulk water already exist. These theoretical equations for oxygen consumption in the sediment express biological consumption with Michaelis-Menten kinetics, and chemical consumption by a first order reaction. Data from laboratory experiments that were conducted to validate the theoretical equations also exist. These experiments were performed in a laboratory channel with well defined flow characteristics for three types of sediments. Herein, the theoretical equations are used to model the experimental data for the three types of sediments. The values used for the parameters in the theoretical equations are determined by iteration until a best fit is obtained for the relationship of SOD to flow velocity from both the theoretical model and experimental data. The goodness of fit is measured by the standard error of prediction and the regression coefficient.  相似文献   

19.
    
ABSTRACT: Numerical modeling techniques are used to analyze streamflow depletion for stream‐aquifer systems with baseflow. The analyses calculated two flow components generated by a pumping well located at a given distance from a river that is hydraulically connected to an unconfined aquifer. The two components are induced stream infiltration and reduced baseflow; both contribute to total streamflow depletion. Simulation results suggest that the induced infiltration, the volume of water discharged from the stream to the aquifer, has a shorter term impact on streamflow, while the reduced baseflow curves show a longer term effect. The peak impacts of the two hydrologic processes on streamflow occur separately. The separate analysis helps in understanding the hydrologic interactions between stream and aquifer. Practically, it provides useful information about contaminant transport from stream to aquifer when water quality is a concern, and for areas where water quantity is an issue, the separate analysis offers additional information to the development of water resource management plan.  相似文献   

20.
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号