首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The geomorphic instantaneous unit hydrograph (GIUH) may be one of the most successful methodologies for predicting flow characteristics in ungauged watersheds. However, one difficulty in applying the GIUH model is determination of travel time, and the other difficulty is the large amount of geomorphologic information required in the study watershed. Recently, using the kinematic-wave theory Lee and Yen (1997) have analytically determined the travel times for overland and channel flows in watersheds. The limitation of using an empirical velocity equation to estimate the runoff travel time for a specified watershed is then relaxed. To simplify the time-consuming work involved in geomorphic parameter measurement on topographic maps, the GIUH model is linked with geographic information systems to obtain geomorphic parameters from digital elevation models. In this paper, a case study performed for peak flow analysis in an ungauged watershed is presented. The geomorphic characteristics of the study watershed were analyzed using a digital elevation model and were used to construct the runoff simulation model. The design storm was then applied to the geomorphic runoff simulation model to obtain the design hydrograph. The analytical procedures proposed in this study can provide a convenient way for hydrologists to estimate hydrograph characteristics based on limited hydrologic information.  相似文献   

2.
ABSTRACT: The unit hydrograph is a common tool in hydraulic design. Used correctly, it allows a design engineer to estimate a runoff hydrograph from a drainage basin given a rainfall event. The typical method for estimating a unit hydrograph for a gaged watershed is by deconvolution. However, distinct storms produce different unit hydrographs for a single watershed. Consequently, a design engineer usually develops a composite, or average, unit hydrograph based on several recorded storm events. Common methods for estimating this composite unit hydrograph include curve fitting, simple aggregation, and multistorm optimization techniques. This paper introduces a new method to perform aggregation of unit hydrographs. The method is an extension to the simple averaging technique, in which prior to averaging, the individual unit hydrograph time ordinates are normalized with respect to the average time to peak. The normalization method is compared to a simple averaging technique and two multistorm aggregation techniques at six rural watersheds in Alabama. The results indicate that on average the normalization method predicts runoff nearly as accurately as the multistorm techniques, and displays improvement for 60 percent of the storms tested when compared with the simple averaging technique.  相似文献   

3.
Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.  相似文献   

4.
ABSTRACT: In this study, remotely sensed data and geographic information system (GIS) tools were used to estimate storm runoff response for Simms Creek watershed in the Etonia basin in northeast Florida. Land cover information from digital orthophoto quarter quadrangles (DOQQ), and enhanced thematic mapper plus (ETM+) were analyzed for the years 1990, 1995, and 2000. The corresponding infiltration excess runoff response of the study area was estimated using the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service Curve Number (NRCS‐CN) method. A digital elevation model (DEM)/GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. A comparison of predicted to observed stream response shows that the model predicts the total runoff volume with an efficiency of 0.98, the peak flow rate at an efficiency of 0.85, and the full direct runoff hydrograph with an average efficiency of 0.65. The DEM/GIS travel time model can be used to predict the runoff response of ungaged watersheds and is useful for predicting runoff hydrographs resulting from proposed large scale changes in the land use.  相似文献   

5.
Abstract: This study compared lag time characteristics of low impact residential development with traditional residential development. Also compared were runoff volume, peak discharge, hydrograph kurtosis, runoff coefficient, and runoff threshold. Low impact development (LID) had a significantly greater centroid lag‐to‐peak, centroid lag, lag‐to‐peak, and peak lag‐to‐peak times than traditional development. Traditional development had a significantly greater depth of discharge and runoff coefficient than LID. The peak discharge in runoff from the traditional development was 1,100% greater than from the LID. The runoff threshold of the LID (6.0 mm) was 100% greater than the traditional development (3.0 mm). The hydrograph shape for the LID watershed had a negative value of kurtosis indicating a leptokurtic distribution, while traditional development had a positive value of kurtosis indicating a platykurtic distribution. The lag times of the LID were significantly greater than the traditional watershed for small (<25.4 mm) but not large (≥25.4 mm) storms; short duration (<4 h) but not long duration (≥4 h) storms; and low antecedent moisture condition (AMC; <25.4 mm) storms but not high AMC (≥25.4 mm) storms. This study indicates that LID resulted in lowered peak discharge depth, runoff coefficient, and discharge volume and increased lag times and runoff threshold compared with traditional residential development.  相似文献   

6.
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships.  相似文献   

7.
ABSTRACT: A computerized geographic information system (GIS) was created in support of data requirements by a hydrologic model designed to predict the runoff hydrograph from ungaged basins. Some geomorphologic characteristics (i.e., channel lengths) were manually measured from topographic maps, while other parameters such as drainage area and number of channels of a specified order, land use, and soil type were digitized and manipulated through use of the GIS. The model required the generation of an integrated Soil Conservation Service (SCS) curve number for the entire basin. To this end, soil associations and land use (generated from analysis of Landsat satellite data) were merged in the GIS to acquire a map representing SCS runoff curve numbers. The volume of runoff obtained from the Watershed Hydrology Simulation (WAHS) Model using this map was compared to the volume computed by hydrograph separation and found to be accurate within 19 percent error. To quantify the effect of changing land use on basin hydrology, the GIS was used to vary percentages from the drainage area from forest to bare soil. By changing the basin runoff curve numbers, significant changes in peak discharge were noted; however, the time to peak discharge remained essentially independent of change in area of land use. The GIS capability eliminated many of the more traditional manual phases of data input arid manipulation, thereby allowing researchers to concentrate on the development and calibration of the model and the interpretation of presumably more accurate results.  相似文献   

8.
Cheng, Shin-jen, 2010. Inferring Hydrograph Components From Rainfall and Streamflow Records Using a Kriging Method-Based Linear Cascade Reservoir Model. Journal of the American Water Resources Association (JAWRA) 46(6):1171–1191. DOI: 10.1111/j.1752-1688.2010.00484.x Abstract: This study investigates the characteristics of hydrograph components in a Taiwan watershed to determine their shapes based on observations. Hydrographs were modeled by a conceptual model of three linear cascade reservoirs. Mean rainfall was calculated using the block Kriging method. The optimal parameters for 42 events from 1966-2008 were calibrated using an optimal algorithm. Rationality of generated runoffs was well compared with a trusty model. Model efficacy was verified using seven averaged parameters with 25 other events. Hydrograph components were characterized based on 42 calibration results. The following conclusions were obtained: (1) except for multipeak storms, a correlation between base time of the surface runoff and soil antecedent moisture is a decreasing power relationship; (2) a correlation between time lag of the surface flow and soil antecedent moisture for single-peak storms is an increasing power relationship; (3) for single-peak events, times to peak of hydrograph components are an increasing power correlation corresponding to the peak time of rainfall; (4) the peak flows of hydrograph components are linearly proportional to that of total runoff, and the peak ratio for the surface runoff to total runoff is approximately 78 and 13% for subsurface runoff to total runoff; and (5) the relationships of total discharges have direct ratios between hydrograph components and observations of total runoffs, and a surface runoff is 60 and 32% for a subsurface runoff.  相似文献   

9.
ABSTRACT: Two methods of computing rainfall excess in the U.S. Army Corps of Engineers’flood hydrograph package (HEC-1), the Initial and Uniform method and the Exponential method, are compared to evaluate the effects on modeled hydrograph accuracy. Two computed unit-hydrograph parameters, time of concentration and storage coefficient, were also compared. Rainfall and runoff data from 209 storms in 32 gaged basins in Illinois were used to calibrate the HEC-1 model. Three hydrograph characteristics - sum of incremental flows, peak discharge, and time of peak discharge - were used to evaluate modeled hydrograph accuracy. Mean percent error for each basin and hydrograph characteristic was computed. An evaluation of the mean errors indicates that, although some bias in modeled hydrograph accuracy is evident, rainfall excess computed using either method results in a computed hydrograph accuracy that is within generally accepted limits. Application of a linear-regression model shows no significant differences in computed values of unit-hydrograph parameters.  相似文献   

10.
ABSTRACT: Several methods for synthetic unit hydrographs are available in the literature. Most of these methods involve the hand fitting of a curve over a set of a few hydrograph points, which can sometimes be a subjective task. Besides, the user often finds it difficult or simply neglects to adjust the generated unit graph to a runoff volume of one unit (inch, cm, or mm). It is the purpose of this paper to present to the design hydrologist a simple method to fit a smooth gamma distribution over a single point specified by the unit hydrograph peak and the time to peak with a guaranteed unit depth of runoff.  相似文献   

11.
ABSTRACT: The objective of this work is to determine the effects of extension of a stream network through land drainage activities during the late 1800s on the hydrologic response of a watershed. The Mackinaw River Basin in Central Illinois was chosen as the focus and the pre‐land and post‐land drainage activity hydrologic responses were obtained through convolution of the hill slope and channel responses and compared. The hill slope response was computed using the kinematic wave model and the channel response was determined using the geomorphologic instantaneous unit hydrograph method. Our hypothesis was that the hydrologic response of the basin would exhibit the characteristic effects of settlement (i.e., increases in peak discharges and decreases in times to peak). This, indeed, is what occurred; however, the increase in peak discharges diminishes as scale increases, leaving only the decrease in times to peak. At larger scales, the dispersive effects of the longer hill slope lengths in the pre‐settlement scenario seem to balance the depressive effects of the longer path lengths in the post‐settlement scenario, thus the pre‐settlement and post‐settlement peak discharges are approximately equivalent. At small scales, the dispersion caused by the hill slope is larger in the pre‐settlement case; thus, the post‐settlement peak discharges are greater than the pre‐settlement.  相似文献   

12.
ABSTRACT: Unit hydrograph ordinates are often estimated by deconvoluting excess rainfall pulses and corresponding direct runoff. The resulting ordinates are given at discrete times spaced evenly at intervals equal to the duration of the rainfall pulse. If the new duration is not a multiple of the parent duration, hydrograph interpolation is required. Linear interpolation, piece-wise nonlinear interpolation and graphical smoothing have been used. These interpolation schemes are expedient but they lack theoretical basis and can lead to undesirable results. Interpolation can be avoided if the instantaneous unit hydrograph (IUH) for the watershed is known. Here two issues connected with the classic Nash IUH are examined: (1) how should the Nash parameters be estimated? and (2) under what conditions is the resulting hydrograph able to reasonably represent watershed response? In the first case, nonlinear constrained optimization provides better estimates of the IUH parameters than does the method of moments. In the second case, the Nash IUH gives good results on watersheds with mild shape unit hydrographs, but performs poorly on watersheds having sharply peaked unit hydrographs. Overall, in comparison to empirical interpolation alternatives, the Nash IUH offers a theoretically sound and practical approach to estimate unit hydrographs for a wide variety of watersheds.  相似文献   

13.
ABSTRACT: A generalized unit hydrograph method is developed and evaluated for ungaged watersheds. A key component in this method is the value of a dimensionless storage coefficient. Procedures to estimate this coefficient are given using calibrated values from 142 rainfall-runoff events gaged in watershed located mainly in the Eastern US. Only limited success was obtained in predicting this storage coefficient. Thirty-seven, independent rainfall-runoff events were used to test the proposed technique. The generalized unit hydrograph predicted the observed runoff hydrographs fairly well with considerable improvement in accuracy over the SCS dimensionless unit hydrograph. Approximately one-half of test storms had percent errors in predicted peak flow rates that were less than 34 percent compared to percent error of 88 percent with the SCS method.  相似文献   

14.
ABSTRACT: Critical design characteristics of ephermal runoff such as hydrograph rise time, duration, mean peak discharge, volume, peak-volume ratio, and maximum flood were related to physical basin parameters such as area, shape, slope, drainage density, basin relief, stream length, and combinations of these in intermontane watersheds representative of the Mexican Highland section of the Basin and Range Province. Parameters used were restricted to those easily obtainable from maps or aerial photographs. A parameter expressing basin shape and size was developed which proved to be as accurate a predictor as others used in existing prediction equations tested and was simpler and faster to derive. Simple prediction equations derived for hydrograph characteristics were all significant except for volume at the 5% level; three were significant at the 1% level. Relationships determined are applicable in semi-arid basins of the Southwest up to 60 square miles (155 km2) in area.  相似文献   

15.
Abstract: Many of the hydrologic methods that are used in engineering practice today resulted from the Spring Flood of 1936, which blanketed the Northeastern portion of the United States. Because of the flood damage that was caused by this rainfall‐snowmelt event, many federal agencies including the U.S. Army Corp of Engineers and the Soil Conservation Service (SCS) implemented the hydrologic theories that were available in the literature at this time and developed hydrologic procedures for design flow estimation. Sherman had recently published his unit hydrograph theory in 1932, and later in 1938 Snyder, who had been charged by the Water Resource Council to develop a synthetic unit hydrograph, published his famous paper. The SCS unit hydrograph theory was developed by Victor Mockus in the late 1950s. Most if not all of the theories at that time reported the rainfall‐runoff process for floods as a surface phenomenon, and as such those theories all required some type of a timing parameter to estimate watershed response time. This article documents the development of the SCS lag equation.  相似文献   

16.
ABSTRACT: New formulas and procedures under the framework of the Rational Formula are presented that are applicable to flood design problems for a small basin if the geometry of the basin can be approximated as an ellipse or a rhombus. Instead of making the assumption in the traditional rational formula that the rainfall is uniformly distributed in the whole duration (Dw) of a design storm, the new method modifies that assumption as: the rainfall is uniformly distributed only in each time interval CD) of the design storm hyetograph, thus extending the rational formula applicable to the case that the rainfall duration is less than the basin concentration time (Tc). The new method can be applied to estimate the flood design peak discharge, and to generate the flood hydrograph simultaneously. The derivation of the formulas is provided in detail in this paper, and an example is also included to illustrate how to apply the new formulas to the flood design problems in small basins.  相似文献   

17.
ABSTRACT: The annual distribution of flow in a drainage basin within a given region is a function of many factors. These may include annual distribution of rainfall, basin orientation, ground cover, or presence of glaciers. Since the North Cascades region of northern Washington State has little variation in precipitation distribution by month, and the region has significant snowpack, one would predict that in an unregulated basin, basin elevation would be one of the most important factors impacting an annual hydrograph distribution. Such a prediction can be made since the higher a drainage basin is, the larger the portion of runoff that would occur as late spring snowmelt. Given that there is a relationship between elevation distribution and annual hydrograph, the problem becomes one of how to use this relationship to model an ungaged basin's hydrograph. This study concludes that, within the North Cascades region and perhaps within other regions, an effective method of determining annual flow distribution is to model ungaged flows in the same manner as flows from a gaged basin with an elevation distribution similar to that of the subject basin.  相似文献   

18.
ABSTRACT: Using a Geographic Information System (GIS), a method is presented to develop a spatially explicit time series of land use in an urbanizing watershed. The method is prefaced on the existence of independent observations of land use at different times and data that describes the spatial‐temporal land use transition characteristics of the watershed between these two points in time. A method is then presented to generalize the TR‐55 graphical method, a common lumped hydrologic model for estimating peak discharge, for use in a spatially explicit scheme. This scheme predicts peak discharge throughout a watershed, rather than at a single selected watershed outlet. Coupling these two methods allows the engineer to model both the temporal and spatial evolution of peak discharge for the watershed. An illustrative watershed in a suburban area of Washington, DC is selected to demonstrate the methods. The model results from these analyses are presented graphically to highlight the complex features in peak discharge behavior that exist both spatially, as a function of position within the watershed drainage network, and temporally, as the watershed undergoes urbanization. These features are not commonly noted in most hydrologic analyses but are captured in these analyses because of the high spatial and temporal resolution of the methods presented. The physical implications of the modeled results are discussed in the context of the information content of a stream gauge located at the overall outlet of the illustrative watershed. This work shows that the common practice of transposition of gauge information to locations internal to the watershed would neglect internal variability in peak discharge behavior, and could potentially lead to the determination of inappropriate design discharges.  相似文献   

19.
ABSTRACT: In a simulation experiment, stormwater flows are partially diverted, at various levels, to a detention basin in order to compare the recombined (i.e., undiverted flows and basin discharges) hydrograph to the response of the traditional, in-line design. The use of off-line detention basins is shown to be an effective technique for reducing peak flows from developed watersheds to pre-development levels with lower storage requirements. In addition, the discharge hydrographs produced by off-line detention are significantly different from those produced by the traditional design and may be more suited to certain stormwater management situations.  相似文献   

20.
ABSTRACT: The Penn State Urban Runoff Model, developed in 1976, is described in this paper. Aside from locating infiltration and detention basin operation in an unconventional manner, the model includes a peak flow presentation table which identifies watershed subareas chiefly responsible for the occurrence of flooding conditions at certain points in the watershed. The results of a case study on an urban drainage basin in the Philadelphia area is discussed, and preferred sites for retention ponds are suggested. The simplicity of the Penn State model is pointed out and computer run costs between 10 and 20 percent of the corresponding cards for HEC-I and SWMM are cited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号