首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Historical flow records are used to estimate the regulatory low flows that serve a key function in setting discharge permit limits through the National Pollutant Discharge Elimination System, which provides a nationwide mechanism for protecting water quality. Use of historical records creates an implicit connection between water quality protection and climate variability. The longer the record, the more likely the low flow estimate will be based on a broad set of climate conditions, and thus provides adequate water quality protection in the future. Unfortunately, a long record often is not available at a specific location. This analysis examines the connection between climate variability and the variability of biologically based and hydrologically based low flow estimates at 176 sites from the Hydro‐Climatic Data Network, a collection of stream gages identified by the USGS as relatively free of anthropogenic influences. Results show that a record of 10 to 20 years is necessary for satisfactory estimates of regulatory low flows. Although it is possible to estimate a biologically based low flow from a record of less than 10 years, these estimates are highly uncertain and incorporate a bias that undermines water quality protection.  相似文献   

2.
ABSTRACT: Water resource planning is based primarily on 20th century instrumental records of climate and streamflow. These records are limited in length to approximately 100 years, in the best cases, and can reflect only a portion of the range of natural variability. The instrumental record neither can be used to gage the unusualness of 20th Century extreme low flow events, nor does it allow the detection of low‐frequency variability that may underlie short‐term variations in flow. In this study, tree rings are used to reconstruct mean annual streamflow for Middle Boulder Creek in the Colorado Front Range, a semi‐arid region of rapid growth and development. The reconstruction is based on a stepwise regression equation that accounts for 70 percent of the variance in the instrumental record, and extends from 1703–1987. The reconstruction suggests that the instrumental record of streamflow for Middle Boulder Creek is not representative of flow in past centuries and that several low flow events in the 19th century were more persistent than any in the 20th century. The 1840s to early 1850s period of low flow is a particularly notable event and may have coincided with a period of low flow in the Upper Colorado River Basin.  相似文献   

3.
Gray, Stephen T., Jeffrey J. Lukas, and Connie A. Woodhouse, 2011. Millennial‐Length Records of Streamflow From Three Major Upper Colorado River Tributaries. Journal of the American Water Resources Association (JAWRA) 47(4):702‐712. DOI: 10.1111/j.1752‐1688.2011.00535.x Abstract: Drought, climate change, and shifting consumptive use are prompting a widespread reassessment of water availability in the Upper Colorado River basin. Here, we present millennial‐length records of water year (October‐September) streamflow for key Upper Colorado tributaries: the White, Yampa, and Little Snake Rivers. Based on tree rings, these records represent the first paleohydrological reconstructions from these subbasins to overlap with a series of Medieval droughts (∼ad 800 to 1300). The reconstructions show marked interannual variability imbedded in nonstationary behavior over decadal to multidecadal time scales. These reconstructions suggest that, even in a millennial context, gaged flows from a handful of years (e.g., 1977 and 2002) were extremely dry. However, droughts of much greater duration and magnitude than any in the instrumental record were regular features prior to 1900. Likewise these reconstructions point to the unusual wetness of the gage period, and the potential for recent observations to paint an overly optimistic picture of regional water supplies. The future of the Upper Colorado River will be determined by a combination of inherent hydroclimatic variability and a broad range of human‐induced changes. It is then essential that regional water managers, water users, and policy makers alike consider a broader range of hydroclimatic scenarios than is offered by the gage record alone.  相似文献   

4.
Streamflow monitoring in the Colorado River Basin (CRB) is essential to ensure diverse needs are met, especially during periods of drought or low flow. Existing stream gage networks, however, provide a limited record of past and current streamflow. Modeled streamflow products with more complete spatial and temporal coverage (including the National Water Model [NWM]), have primarily focused on flooding, rather than sustained drought or low flow conditions. Objectives of this study are to (1) evaluate historical performance of the NWM streamflow estimates (particularly with respect to droughts and seasonal low flows) and (2) identify characteristics relevant to model inputs and suitability for future applications. Comparisons of retrospective flows from the NWM to observed flows from the United States Geological Survey stream gage network over 22 years in the CRB reveal a tendency for underestimating low flow frequency, locations with low flows, and the number of years with low flows. We found model performance to be more accurate for the Upper CRB and at sites with higher precipitation, snow percent, baseflow index, and elevations. Underestimation of low flows and variable model performance has important implications for future applications: inaccurate evaluations of historical low flows and droughts, and less reliable performance outside of specific watershed/stream conditions. This highlights characteristics on which to focus future model development efforts.  相似文献   

5.
ABSTRACT: Frequent and persistent droughts exacerbate the problems caused by the inherent scarcity of water in the semiarid to arid parts of the southwestern United States. The occurrence of drought is driven by climatic variability, which for years before about the beginning of the 20th century in the Southwest must be inferred from proxy records. As part of a multidisciplinary study of the potential hydrologic impact of severe sustained drought on the Colorado River, the physical basis and limitations of tree rings as indicators of severe sustained drought are reviewed, and tree-ring data are analyzed to delineate a “worst-case” drought scenario for the Upper Colorado River Basin (UCRB). Runs analysis of a 121-site tree-ring network, 1600–1962, identifies a four-year drought in the 1660s as the longest-duration large-scale drought in the Southwest in the recent tree-ring record. Longer tree-ring records suggest a much longer and more severe drought in 1579–1598. The regression estimate of the mean annual Colorado River flow for this period is 10.95 million acre-feet, or 81 percent of the long-term mean. The estimated flows for the 1500s should be used with caution in impact studies because sample size is small and some reconstructed values are extrapolations.  相似文献   

6.
In the northern hemisphere, summer low flows are a key attribute defining both quantity and quality of aquatic habitat. I developed one set of models for New England streams/rivers predicting July/August median flows averaged across 1985–2015 as a function of weather, slope, % imperviousness, watershed storage, glacial geology, and soils. These models performed better than most United States Geological Survey models for summer flows developed at a statewide scale. I developed a second set of models predicting interannual differences in summer flows as a function of differences in air temperature, precipitation, the North Atlantic Oscillation (NAO) index, and lagged NAO. Use of difference equations eliminated the need for transformations and accounted for serial autocorrelations at lag 1. The models were used in sequence to estimate time series for monthly low flows and for two derived flow metrics (tenth percentile [Q10] and minimum 3‐in‐5 year average flows). The first metric is commonly used in assessing risk to low‐flow conditions over time, while the second has been correlated with increased probability of localized extinctions for brook trout. The flow metrics showed increasing trends across most of New England for 1985–2015. However, application of summer flow models with average and extreme climate projections to the Taunton River, Massachusetts, a sensitive watershed undergoing rapid development, projected that low‐flow metrics will decrease over the next 50 years.  相似文献   

7.
This study describes the application of the NASA version of the Carnegie‐Ames‐Stanford Approach (CASA) ecosystem model coupled with a surface hydrologic routing scheme previously called the Hydrological Routing Algorithm (HYDRA) to model monthly discharge rates from 2000 to 2007 on the Merced River drainage in Yosemite National Park, California. To assess CASA‐HYDRA's capability to estimate actual water flows in extreme precipitation years, the focus of this study is the 2007 water year, which was very dry, and the 2005 water year, which was a moderately wet year in the historical record. Prior to comparisons to gauge records, CASA‐HYDRA snowmelt algorithms were modified with equations from the U.S. Department of Agriculture Snowmelt‐Runoff Model (SRM), which has been designed to predict daily streamflow in mountain basins where snowmelt is a major runoff factor. Results show that model predictions closely matched monthly flow rates at the Pohono Bridge gauge station (USGS#11266500), with R2 = 0.67 and Nash‐Sutcliffe (E) = 0.65. By subdividing the upper Merced River basin into subbasins with high spatial resolution in the gridded modeling approach, we were able to determine which biophysical characteristics in the Sierra differed to the largest degree in extreme low‐flow and high‐flow years. Average elevation and snowpack accumulation were found to be the most important explanatory variables to understand subbasin contributions to monthly discharge rates.  相似文献   

8.
Flushing flows are re1eses from dams designed to remove fine sediment from downstream spawning habitat. We evaluated flushing flows on reaches proposed for hydroelectric diversions on seven streams in the eastern Sierra Nevada, California, with wild populations of brown trout (Salmo trutta). The stream reaches are steep (average map slopes range from 7 to 17 percent), are dominated by boulder cascades, and afford few opportunities for gravel deposition. Methods for estimating flushing flows from flow records, developed from studies in other localities, produced widely differing results when applied to the study streams, probably reflecting differences in the hydrologic and geomorphic characteristics of the streams on which the methods were developed. Tracer gravel experiments demonstrated that all sampled gravels were washed out by the flows of 1986, a wet year. Size analyses of gravel samples and hydraulic data from field surveys were used in tractive-force calculations in an attempt to specify the flow required to flush the gravels. However, these calculations produced some unrealistic results because the flows were nonuniform in the study reaches. This suggests that the tractive-force approach may not be generally applicable to small, steep streams where nonuniform flow conditions prevail.  相似文献   

9.
ABSTRACT: The HEC-4 monthly stream flow simulation model, developed by the Hydrologic Engineering Center, Davis, California, is used to extend the available historical stream flow records in the Central Ohio area. The principal objective of this paper is to examine the effectiveness of the HEC-4 model in generating synthetic monthly flows. Important statistical parameters are evaluated in order to relate the statistical properties of the historical and generated flows. In doing so, it is observed that the mean, standard deviation, and skewness of the generated flows are consistently larger than the corresponding estimates based on historical flows. However, results show that these statistics, as well as the lag-1 serial correlation, are generally well maintained by the generated sequences. The degree to which any statistical dissimilarities would be critical, from an engineering design point of view, is demonstrated by utilizing their low flow characteristics. Estimates of reservoir safe-yields, based on a nonsequential mass-curve analysis of the historical and generated low flows, indicate a nominal difference in this particular study.  相似文献   

10.
Abstract: Groundwater transport often complicates understanding of surface‐water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late‐winter or spring base‐flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base‐flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base‐flow flux of alachlor and metolachlor is <3% of the total base‐flow flux of those compounds plus degradates. Base‐flow flux of nitrate and herbicides as a percentage of applications is typically highest in well‐drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base‐flow nitrate flux represents 70% of total nitrogen flux in headwater streams.  相似文献   

11.
Channel roughness, often described by Manning's n, is used to represent the amount of resistance that flow encounters, and has direct implications on velocity and discharge. Ideally, n is calculated from a long‐term record of channel discharge and hydraulic geometry. In the absence of these data, a combination of photo references and a validated qualitative method is preferable to simply choosing n arbitrarily or from a table. The purpose of this study was to use United States Geological Survey (USGS) streamflow data to calculate roughness coefficients for streams in the mountains of North Carolina. Five USGS gage stations were selected for this study, representing drainage areas between 71.5 and 337 km2. Photo references of the study sites are presented. Measured discharges were combined with hydraulic geometry at a cross‐section to calculate roughness coefficients for flows of interest. At bankfull flow, n ranged between 0.039 and 0.064 for the five study sites. Roughness coefficients were not constant for all flows in a channel, and fluctuated over a large range. At all sites, roughness was highest during low‐flow conditions, then quickly decreased as flow increased, up to the bankfull elevation.  相似文献   

12.
ABSTRACT: Information regarding long term hydrological variability is critical for the effective management of surface water resources. In the Canadian Prairie region, growing dependence on major river systems for irrigation and other consumptive uses has resulted in an increasing vulnerability to hydrological drought and growing interprovincial tension. This study presents the first dendrochronological records of streamflow for Canadian Prairie rivers. We present 1,113‐year, 522‐year, and 325‐year reconstructions of total water year (October to September) streamflow for the North Saskatchewan, South Saskatchewan, and Saskatchewan Rivers, respectively. The reconstructions indicate relatively high flows during the 20th Century and provide evidence of past prolonged droughts. Low flows during the 1840s correspond with aridity that extended over much of the western United States. Similarly, an exceptional period of prolonged low flow conditions, approximately 900 A.D. to 1300 A.D., is coincident with evidence of sustained drought across central and western North America. The 16th Century megadrought of the western United States and Mexico, however, does not appear to have had a major impact on the Canadian rivers. The dendrohydrological records illustrate the risks involved if future water policy and infrastructure development in the Canadian Prairies are based solely on records of streamflow variability over the historical record.  相似文献   

13.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

14.
ABSTRACT: The ability to predict extreme floods is an important part of the planning process for any water project for which failure will be very costly. The length of a gage record available for use in estimating extreme flows is generally much shorter than the recurrence interval of the desired flows, resulting in estimates having a high degree of uncertainty. Maximum likelihood estimators of the parameters of the three parameter lognormal (3PLN) distribution, which make use of historical data, are presented. A Monte Carlo study of extreme flows estimated from samples drawn from three hypothetical 3PLN populations showed that inclusion of historical flows with the gage record reduced the bias and variance of extreme flow estimates. Asymptotic theory approximations of parameter variances and covariances calculated using the second and mixed partial derivatives of the log likelihood function agreed well with Monte Carlo results. First order approximations of the standard deviations of the extreme flow estimates did not agree with the Monte Carlo results. An alternative method for calculating those standard deviations, the “asymptotic simulation” method, is described. The standard deviations calculated by asymptotic simulation agree well with the Monte Carlo results.  相似文献   

15.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   

16.
ABSTRACT: Climate data from the Malcolm Knapp Research Forest (MKRF) in the Coast Range mountains of southwestern British Columbia were used to examine relationships between climate and hydrology and variations in the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Air and water temperatures were higher and precipitation was lower during in‐phase or warm PDO/E1 Niño events than in other years. In contrast, in‐phase or cool PDO/La Niña years were generally cooler and wetter than other years. Precipitation and East Creek discharge were positively related to the Southern Oscillation Index (SOI) and negatively related to the PDO index. Conversely, air and water temperatures were negatively related to the SOI and positively related to the PDO index. Differences in precipitation and air temperature were also evident at longer time scales when separated by PDO phase. Because of drier conditions during in‐phase El Niño events, the flow of organic matter from East Creek to downstream portions of the channel network was lower compared to other years. This reduction has implications for downstream communities, as these subsidies provide a major source of energy for stream food webs. Therefore, short term and long term shifts in climate, discharge, and water temperature may have profound impacts on the ecology of Pacific Northwest (PNW) watersheds due to changes in a number of ecosystem processes such as altered flux of organic matter from headwater streams to larger rivers.  相似文献   

17.
Kenney, Terry A. and Susan G. Buto, 2012. Evaluation of the Temporal Transferability of a Model Describing Dissolved Solids in Streams of the Upper Colorado River Basin. Journal of the American Water Resources Association (JAWRA) 48(5): 1041‐1053. DOI: 10.1111/j.1752‐1688.2012.00667.x Abstract: The application of a nonlinear least‐squares regression model describing the sources and transport of dissolved solids in streams of the Upper Colorado River Basin, and that was calibrated using data from water year 1991, was evaluated for use in predicting annual dissolved‐solids loads for the years 1974 through 1998. Simulations for each water year were run using annual climate data. To evaluate how well the model captures the observed annual variability across the basin, differences in predicted annual dissolved‐solids loads for each simulated year and 1991 were compared with differences in monitored annual loads. The temporal trend of the differences between predicted annual loads for the simulated years and the load for 1991 generally followed the trend of the monitored loads. The model appears to underpredict the largest annual loads and overpredict some of the smaller annual loads. An underprediction bias for wetter years was evident in the residuals as was an overprediction bias, to a lesser degree, for drier years. A regression analysis on the residuals suggests that the underprediction bias is associated with precipitation differences from 1991 and with previously defined downward trends in dissolved‐solids concentrations in the basin. In general, given the representative climatic conditions, the model adequately performs throughout the period examined. However, the model is most transferable to years with climatic conditions similar to 1991.  相似文献   

18.
ABSTRACT: The Salt and Verde Rivers of central Arizona provide the water supply for metropolitan Phoenix and a considerable acreage of irrigated agriculture. Rapid urbanization has caused concern over future water supply and aggravated flooding in the already flood-prone Salt River Valley. Tree-ring data were used as a proxy source to extend the annual and seasonal runoff records back to A.D. 1580 and thus to determine whether the period of record for annual discharge adequately represents the long term flow characteristics of the two rivers. Results show that several periods of extended low flow have occurred during the past 400 years, many of which were more severe then any comparable period since 1890. The low flow periods appear to have a recurrence interval of about 22 years. Also the gaged records contain an above average number of high seasonal and annual flows when compared to the entire 400 years. The reconstructions contain important implications for future water supply and flood potentials in the Salt River Valley.  相似文献   

19.
Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the “Ecological Limits of Hydrologic Alteration (ELOHA)”. The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81–2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.  相似文献   

20.
In Pacific Northwest streams, summer low flows limit water available to competing instream (salmon) and out-of-stream (human) uses, creating broad interest in how and why low flows are trending. Analyses that assumed linear (monotonic) change over the last ~60 years revealed declining low flow trends in minimally disturbed streams. Here, polynomials were used to model flow trends between 1929 and 2015. A multidecadal oscillation was observed in flows, which increased initially from the 1930s until the 1950s, declined until the 1990s, and then increased again. A similar oscillation was detected in precipitation series, and opposing oscillations in surface temperature, Pacific Decadal Oscillation, and Interdecadal Pacific Oscillation series. Multidecadal oscillations with similar periods to those described here are well known in climate indices. Fitted model terms were consistent with flow trends being influenced by at least two drivers, one oscillating and the other monotonic. Anthropogenic warming is a candidate driver for the monotonic decline, and variation in (internal) climatic circulation for the oscillating trend, but others were not ruled out. The recent upturn in streamflows suggests that anthropogenic warming has not been the dominant factor driving streamflow trends, at least until 2015. Climate projections based on simulations that omit drivers of multidecadal variation are likely to underestimate the range, and rate of change, of future climatic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号